Advertisement

Near-Optimal Placement of Virtualized EPC Functions with Latency Bounds

  • David DietrichEmail author
  • Chrysa Papagianni
  • Panagiotis Papadimitriou
  • John S. Baras
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10340)

Abstract

The proliferation of mobiles devices, application sprawl, and the ever-increasing data volume generates significant stress on cellular networks and particularly on the cellular core, also known as the Evolved Packet Core (EPC), i.e., the cellular network component residing between the radio access network and the Internet. This is further exacerbated by the deployment of hardware appliances for the implementation of a wide range of network functions (e.g., gateways, mobility management, firewalls, network address translation), hindering any opportunity for elastic provisioning, and eventually leading to high operational costs and a significant degree of load imbalance across the EPC.

Network Function Virtualization (NFV) has been seen a promising solution in order to enable elasticity in the cellular core. Applying NFV to the EPC raises the need for network function (NF) placement, which in turn entails significant challenges, due to the stringent delay budgets among cellular core components and the coexistence of communicating data and control plane elements. To address these challenges, we present a linear programming (LP) formulation for the computation of NF placements that strikes a balance between optimality and time complexity. Our evaluation results show that the LP achieves significantly better load balancing, request acceptance rate, and resource utilization compared to a greedy algorithm that performs NF placement inline with carriers’ common practice today.

Notes

Acknowledgments

This work was partially supported by the EU FP7 T-NOVA Project (619520).

References

  1. 1.
    ETSI Network Function Virtualization. http://www.etsi.org/technologies-clusters/technologies/nfv
  2. 2.
  3. 3.
    T-NOVA Project. http://www.t-nova.eu/
  4. 4.
    SONATA Project. http://www.sonata-nfv.eu/
  5. 5.
    UNIFY Project. http://www.fp7-unify.eu/
  6. 6.
    3GPP TS 24.301: 3GPP Non-Access-Stratum (NAS) protocol for Evolved Packet System (EPS). http://www.3gpp.org/DynaReport/24301.htm
  7. 7.
    Business Case for Juniper Networks Virtualized Mobile Control Gateway, White Paper, Juniper (2013)Google Scholar
  8. 8.
    Abujoda, A., Kouchaksaraei, H.R., Papadimitriou, P.: SDN-based source routing for scalable service chaining in datacenters. In: Mamatas, L., Matta, I., Papadimitriou, P., Koucheryavy, Y. (eds.) WWIC 2016. LNCS, vol. 9674, pp. 66–77. Springer, Cham (2016). doi: 10.1007/978-3-319-33936-8_6 CrossRefGoogle Scholar
  9. 9.
    Abujoda, A., Papadimitriou, P.: MIDAS: middlebox discovery and selection for on-path flow processing. In: IEEE COMSNETS, Bangalore, India, January 2015Google Scholar
  10. 10.
    Bagaa, M., Taleb, T., Ksentini, A.: Service-aware network function placement for efficient traffic handling in carrier cloud. In: IEEE WCNC, Istanbul, Turkey, April 2014Google Scholar
  11. 11.
    Banerjee, A., et al.: Scaling the LTE control-plane for future mobile access. In: ACM CONEXT, Heidelberg, Germany, December 2015Google Scholar
  12. 12.
    Baumgartner, A., Reddy, V.S., Bauschert, T.: Mobile core network virtualization: a model for combined virtual core network function placement and topology optimization. In: IEEE NetSoft 2015, London, UK, April 2015Google Scholar
  13. 13.
    Baumgartner, A., Reddy, V.S., Bauschert, T.: Combined virtual mobile core network function placement and topology optimization with latency bounds. In: EWSDN 2015, Bilbao, Spain, September 2015Google Scholar
  14. 14.
    Basta, A., et al.: Applying NFV and SDN to LTE mobile core gateways, the functions placement problem. In: 4th Workshop on All Things Cellular, ACM SIGCOMM 2014, Chicago, US, August 2014Google Scholar
  15. 15.
    Cao, Z., Abujoda, A., Papadimitriou, P.: Distributed data deluge (D3): efficient state management for virtualized network functions. In: IEEE INFOCOM SWFAN, San Francisco, USA, April 2016Google Scholar
  16. 16.
    Cohen, R., Lewin-Eytan, L., Naor, J., Raz, D.: Near optimal placement of virtual network functions. In: IEEE INFOCOM, Hong Kong, China, April 2015Google Scholar
  17. 17.
    Diego, W., Hamchaoui, I., Lagrange, X.: The cost of QoS in LTE/EPC mobile networks evaluation of processing load. In: IEEE VTC, Boston, MA, USA (2015)Google Scholar
  18. 18.
    Diego, W., Hamchaoui, I., Lagrange, X.: Cost factor analysis of QoS in LTE/EPC mobile networks. In: IEEE CCNC, Las Vegas, USA, January 2016Google Scholar
  19. 19.
    Dietrich, D., Abujoda, A., Papadimitriou, P.: Network service embedding across multiple providers with nestor. In: IFIP Networking, Toulouse, France, May 2015Google Scholar
  20. 20.
    Dietrich, D., Papagianni, C., Papadimitriou, P., Baras, J.: Network function placement on virtualized cellular cores. In: IEEE COMSNETS, Bangalore, India, January 2017Google Scholar
  21. 21.
    Bari, M.F.: Data center network virtualization: a survey. IEEE Commun. Surv. Tutorials 15(2), 909–928 (2013)CrossRefGoogle Scholar
  22. 22.
    Fayazbakhsh, S., et al.: Enforcing network-wide policies in the presence of dynamic middlebox actions using flowtags. In: USENIX NSDI 2014, Seattle, USA, April 2014Google Scholar
  23. 23.
    Gember-Jacobson, A., et al.: OpenNF: enabling innovation in network function control. In: ACM SIGCOMM 2014, Chicago, USA, August 2014Google Scholar
  24. 24.
    Hirschman, B., et al.: High-performance evolved packet core signaling and bearer processing on general-purpose processors. IEEE Netw. 29(3), 6–14 (2015)CrossRefGoogle Scholar
  25. 25.
    Lukovszki, T., Schmid, S.: Online admission control and embedding of service chains. In: Scheideler, C. (ed.) Structural Information and Communication Complexity. LNCS, vol. 9439, pp. 104–118. Springer, Cham (2015). doi: 10.1007/978-3-319-25258-2_8 CrossRefGoogle Scholar
  26. 26.
    Mehraghdam, S., Keller, M., Karl, H.: Specifying and placing chains of virtual network functions. In: IEEE CloudNet, Luxembourg, October 2014Google Scholar
  27. 27.
    Prados-Garzon, J., et al.: Latency evaluation of a virtualized MME. In: IEEE Wireless Days, Toulouse, France, March 2016Google Scholar
  28. 28.
    Qazi, Z., et al.: KLEIN: a minimally disruptive design for an elastic cellular core. In: ACM SOSR 2016, Santa Clara, USA, March 2016Google Scholar
  29. 29.
    Qazi, Z., et al.: SIMPLE-fying middlebox policy enforcement using SDN. In: ACM SIGCOMM 2013, Hong Kong, China, August 2013Google Scholar
  30. 30.
    Rajan, A.S., et al.: Understanding the bottlenecks in virtualizing cellular core network functions. In: IEEE LANMAN, Beijing, China, April 2015Google Scholar
  31. 31.
    Sama, M.R., Ben Hadj Said, S., Guillouard, K., Suciu, L.: Enabling network programmability in LTE/EPC architecture using OpenFlow. In: WiOpt 2014, Hammamet, Tunisia, May 2014Google Scholar
  32. 32.
    Savic, Z.: LTE Design and Deployment Strategies - CISCO. http://tinyurl.com/lj2erpg
  33. 33.
    Shafiq, M.Z., Ji, L., Liu, A.X., Pang, J., Wang, J.: A first look at cellular machine-to-machine traffic: large scale measurement and characterization. In: ACM SIGMETRICS, London, UK, June 2012Google Scholar
  34. 34.
    Taleb, T., Bagaa, M., Ksentini, A.: User mobility-aware virtual network function placement for virtual 5G network infrastructure. In: IEEE ICC 2025, London, UK, June 2015Google Scholar
  35. 35.
    Taleb, T., Ksentini, A.: Gateway relocation avoidance-aware network function placement in carrier cloud. In: ACM MSWiM, Barcelona, Spain, November 2013Google Scholar
  36. 36.
    Wang, Z., et al.: An untold story of middleboxes in cellular networks. In: ACM SIGCOMM 2011, Toronto, Canada, August 2011Google Scholar
  37. 37.
    Yousaf, F., et al.: SoftEPC: dynamic instantiation of mobile core network entities for efficient resource utilization. In: IEEE ICC, Budapest, Hungary, June 2013Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • David Dietrich
    • 1
    Email author
  • Chrysa Papagianni
    • 2
  • Panagiotis Papadimitriou
    • 3
  • John S. Baras
    • 2
  1. 1.Institute of Communications TechnologyLeibniz Universität HannoverHanoverGermany
  2. 2.Institute for Systems ResearchUniversity of MarylandCollege ParkUSA
  3. 3.Department of Applied InformaticsUniversity of MacedoniaThessalonikiGreece

Personalised recommendations