Skip to main content

Abstract

The article presents the abnormal textures identification technology based on structural and statistical models of amplitude-phase images (APIm) – multidimensional data arrays (semantic models) and statistical correlation analysis methods using the generalized discrete Hilbert transforms (DHT) – 2D Hilbert (Foucault) isotropic (HTI), anisotropic (HTA) and total transforms – AP-analysis (APA) to calculate the APIm. The identified fragments of textures are obtained as examples of experimental observation of real mammograms contains areas of pathological tissues. The DHT based information technology as conceptual chart description is discussed and illustrated with DHO domain images. As additional method for anomaly of tissue detecting the multiply cascade DHT is proposed and elaborated at base transforms domains. The enhancement of abnormal texture areas at mammograms processed could increase the abilities of identification methodic and diagnostic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pratt, W.K.: Digital Image Processing. PIKS Inside, 4th edn. Wiley, New York (2010)

    Google Scholar 

  2. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley, New York (2001)

    MATH  Google Scholar 

  3. Tuceryan, M., Jain, A.K.: Texture analysis. In: Chen, C.H., Pau, L.F., Wang, P.S.P. (eds.) The Handbook of Pattern Recognition and Computer Vision, 2nd edn, pp. 207–248. World Scientific Publishing Co., Singapore (1998)

    Google Scholar 

  4. Hahn, S.L., Snopek, K.M.: Complex and Hypercomplex Analytic Signals Theory and Applications. Artech House, Boston (2017)

    MATH  Google Scholar 

  5. Hahn, S.L.: Hilbert Transforms in Signal Processing. Artech House, Norwood (1996)

    MATH  Google Scholar 

  6. Wietzke, L., Flejschmann, O., Sedlazeck, A., Sommer, G.: Local structure analysis by isotropic Hilbert transforms. In: Goesele et al. (eds.) DAGM, pp. 131–140, Darmstadt (2010)

    Google Scholar 

  7. Guanlei, X., Xiaotong, W., Xiaogang, X.: Improved bi-dimensional EMD and Hilbert spectrum for the analysis of textures. Pattern Recogn. 42, 718–734 (2009)

    Article  MATH  Google Scholar 

  8. Ye, Y., Yu, H., Wei, Y., Wang, G.: A general local reconstruction approach based on truncated Hilbert transform. Int. J. Biomed. Imaging 2007, 1–8 (2008). doi:10.1155/2007/63634

    Article  Google Scholar 

  9. Li, L., Kang, K., Chen, Z., Zhang, L., Xing, X.: A general region-of-interest image reconstruction approach with truncated Hilbert transform. J. X-Ray Sci. Technol. 17, 135–152 (2009)

    Google Scholar 

  10. Ji, C., Cui, Y., Cao, W., Bao, S.: Fast finite Hilbert transform via DE quadrature scheme. J. X-Ray Sci. Technol. 18, 27–38 (2010)

    Google Scholar 

  11. Kumar, U.P., Somasundaram, U., Kothiyal, M.P., Mochan, N.K.: Single frame digital fringe projection profilometry for 3-D surface shape measurement. Optik 124, 166–169 (2013)

    Article  Google Scholar 

  12. Arnison, M.R., Cogwell, C.J., Smith, N.J., Pekete, P.W., Larkin, K.G.: Using the Hilbert transform for 3D visualization of differential interference contrast microscope images. J. Microsc. 199, 79–84 (2000)

    Article  Google Scholar 

  13. Sudoł, A., Stemplewski, S., Vlasenko, V.: Methods of digital Hilbert optics in modelling of dynamic scene analysis process: amplitude-phase approach to the processing and identification objects’ pictures. In: Information Systems Architecture and Technology, pp. 129–138. Wroclaw University of Technology, Wroclaw (2014)

    Google Scholar 

  14. Vlasenko, V., Sudoł, A.: DHO-methodology for complex shape objects and textures at dynamic scenes identification: structure design, modeling and verification. Syst. Sci. 35(3), 15–29 (2009)

    MATH  Google Scholar 

  15. Vlasenko, V., Vlasenko, N., Semenov, D., Sudoł, A.: Information technologies for dynamic objects and textures identification based on methods of digital Hilbert optics. In: Information Systems Architecture and Technology, pp. 153–160. Decision Making Models, Wroclaw University of Technology, Wroclaw (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viktor Vlasenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Vlasenko, V., Stemplewski, S., Koczur, P. (2018). Abnormal Textures Identification Based on Digital Hilbert Optics Methods: Fundamental Transforms and Models. In: Świątek, J., Borzemski, L., Wilimowska, Z. (eds) Information Systems Architecture and Technology: Proceedings of 38th International Conference on Information Systems Architecture and Technology – ISAT 2017. ISAT 2017. Advances in Intelligent Systems and Computing, vol 656. Springer, Cham. https://doi.org/10.1007/978-3-319-67229-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67229-8_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67228-1

  • Online ISBN: 978-3-319-67229-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics