Skip to main content

The Message or the Messenger? Inferring Virality and Diffusion Structure from Online Petition Signature Data

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10539))

Abstract

Goel et al. [14] examined diffusion data from Twitter to conclude that online petitions are shared more virally than other types of content. Their definition of structural virality, which measures the extent to which diffusion follows a broadcast model or is spread person to person (virally), depends on knowing the topology of the diffusion cascade. But often the diffusion structure cannot be observed directly. We examined time-stamped signature data from the Obama White House’s We the People petition platform. We developed measures based on temporal dynamics that, we argue, can be used to infer diffusion structure as well as the more intrinsic notion of virality sometimes known as infectiousness. These measures indicate that successful petitions are likely to be higher in both intrinsic and structural virality than unsuccessful petitions are. We also investigate threshold effects on petition signing that challenge simple contagion models, and report simulations for a theoretical model that are consistent with our data.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    We the people petitions from the Obama years are archived at https://petitions.obamawhitehouse.archives.gov.

  2. 2.

    Our data are available at https://github.com/justinlai/petitiondata.

  3. 3.

    For an alternative perspective on e-petition “success,” see Wright [47].

  4. 4.

    Indeed, for some other types of content such as the spread of memes, initial infectiousness appears not to be a good predictor of later success [39, 45].

  5. 5.

    In footnote 10 on p. 187, Goel et al. clarify that this statement applies to normalized and not just to absolute size [14].

References

  1. Adar, E., Adamic, L.: Tracking information epidemics in blogspace. In: IEEE/WIC/ACM International Conference on Web Intelligence. IEEE Computer Society, Compiegne University of Technology, France (2005)

    Google Scholar 

  2. Bandura, A., Cervone, D.: Differential engagement of self-reactive influences in cognitive motivation. Organ. Behav. Hum. Decis. Process. 38(1), 92–113 (1986)

    Article  Google Scholar 

  3. Bakshy, E., Hofman, J.M., Mason, W.A., Watts, D.J.: Everyone’s an influencer: quantifying influence on twitter. In: Proceedings of the Fourth ACM International Conference on Web Search and Data Mining, pp. 65–74. ACM (2011)

    Google Scholar 

  4. Bakshy, E., Karrer, B., Adamic, L.: Social influence and the diffusion of user-created content. In: Proceedings of the Tenth ACM Conference on Electronic Commerce, pp. 325–334. Association of Computing Machinery (2009)

    Google Scholar 

  5. Bass, F.M.: A new product growth for model consumer durables. Manag. Sci. 15(5), 215–227 (1969)

    Article  MATH  Google Scholar 

  6. Centola, D., Macy, M.: Complex contagions and the weakness of long ties. Am. J. Sociol. 113(3), 702–734 (2007)

    Article  Google Scholar 

  7. Chan, C.L.: Temporal dynamics of adoption and diffusion patterns in online petitioning. M.S. thesis, Stanford University (2015)

    Google Scholar 

  8. Cheema, A., Bagchi, R.: The effect of goal visualization on goal pursuit: implications for consumers and managers. J. Mark. 75(2), 109–123 (2011)

    Article  Google Scholar 

  9. Coleman, J., Katz, E., Menzel, H.: The diffusion of an innovation among physicians. Sociometry 20, 253–270 (1957)

    Article  Google Scholar 

  10. Cryder, C.E., Loewenstein, G., Seltman, H.: Goal gradient in helping behavior. J. Exp. Soc. Psychol. 49(6), 1078–1083 (2013)

    Article  Google Scholar 

  11. Dodds, P.S., Watts, D.J.: A generalized model of social and biological contagion. J. Theor. Biol. 232(4), 587–604 (2005)

    Article  MathSciNet  Google Scholar 

  12. Gladwell, M.: The Tipping Point: How Little Things can Make a Big Difference. Little, Brown and Company, Boston (2002)

    Google Scholar 

  13. Gleeson, J.P., Cellai, D., Onnela, J.-P., Porter, M.A., Reed-Tsochas, F.: A simple generative model of collective online behaviour (2013). arXiv preprint arXiv:1305.7440

  14. Goel, S., Anderson, A., Hofman, J., Watts, D.: The structural virality of online diffusion. Manag. Sci. 62(1), 180–196 (2016)

    Google Scholar 

  15. Goel, S., Watts, D.J., Goldstein, D.G.: The structure of online diffusion networks. In: Proceedings of the 13th ACM Conference on Electronic Commerce, pp. 623–638. ACM (2012)

    Google Scholar 

  16. Goldenberg, J., Libai, B., Muller, E.: Talk of the network: a complex systems look at the underlying process of word-of-mouth. Mark. Lett. 12(3), 211–223 (2001)

    Article  Google Scholar 

  17. Gonzalez-Bailon, S., Borge-Holthoefer, J., Rivero, A., Moreno, Y.: The dynamics of protest recruitment through an online network. Sci. Rep. 1, 197 (2011)

    Article  Google Scholar 

  18. Granovetter, M.: Threshold models of collective behavior. Am. J. Sociol. 83(6), 1420–1443 (1978)

    Article  Google Scholar 

  19. Hale, S.A., John, P., Margetts, H.Z., Yasseri, T.: Investigating political participation and social information using big data and a natural experiment. In: APSA 2014 Annual Meeting Paper (2014)

    Google Scholar 

  20. Hale, S.A., Margetts, H., Yasseri, T.: Petition growth and success rates on the UK no. 10 downing street website. In: Proceedings of the 5th Annual ACM Web Science Conference, pp. 132–138. ACM (2013)

    Google Scholar 

  21. Heath, C., Larrick, R.P., Wu, G.: Goals as reference points. Cogn. Psychol. 38(1), 79–109 (1999)

    Article  Google Scholar 

  22. Hull, C.L.: The rat’s speed-of-locomotion gradient in the approach to food. J. Comp. Psychol. 17(3), 393 (1934)

    Article  Google Scholar 

  23. Iyengar, R., Van Den Bulte, C., Valente, T.W.: Opinion leadership and social contagion in new product diffusion. Mark. Sci. 30, 195–212 (2011)

    Article  Google Scholar 

  24. Jones, B.D., Baumgartner, F.R.: The Politics of Attention: How Government Prioritizes Problems. University of Chicago Press, Chicago (2005)

    Google Scholar 

  25. Jungherr, A., Jrgens, P.: The political click: political participation through E? Petitions in Germany. Policy Internet 2(4), 131–165 (2010)

    Article  Google Scholar 

  26. Karpf, D.: Analytic Activism: Digital Listening and the New Political Strategy. Oxford University Press, Corby (2017)

    Book  Google Scholar 

  27. Kempe, D., Kleinberg, J., Tardos, E.: Maximizing the spread of influence through a social network. In: 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Association of Computing Machinery (2003)

    Google Scholar 

  28. Kitsak, M., Gallos, L.K., Havlin, S., Liljeros, F., Muchnik, L., Stanley, H.E., Makse, H.A.: Identification of influential spreaders in complex networks. Nat. Phys. 6(11), 888–893 (2010)

    Article  Google Scholar 

  29. Kivetz, R., Urminsky, O., Zheng, Y.: The goal-gradient hypothesis resurrected: purchase acceleration, illusionary goal progress, and customer retention. J. Mark. Res. 43(1), 39–58 (2006)

    Article  Google Scholar 

  30. Koo, M., Fishbach, A.: The small-area hypothesis: effects of progress monitoring on goal adherence. J. Consum. Res. 39(3), 493–509 (2012)

    Article  Google Scholar 

  31. Leskovec, J., Singh, A., Kleinberg, J.: Patterns of influence in a recommendation network. In: Ng, W.-K., Kitsuregawa, M., Li, J., Chang, K. (eds.) PAKDD 2006. LNCS, vol. 3918, pp. 380–389. Springer, Heidelberg (2006). doi:10.1007/11731139_44

    Chapter  Google Scholar 

  32. Lin, Y.-R., Margolin, D., Keegan, B., Baronchelli, A., Lazer, D.: #bigbirds never die: understanding social dynamics of emergent hashtags (2013)

    Google Scholar 

  33. Locke, E.A.: Toward a theory of task motivation and incentives. Organ. Behav. Hum. Perform. 3(2), 157–189 (1968)

    Article  MathSciNet  Google Scholar 

  34. Lopez-Pintado, D., Watts, D.: Social influence, binary decisions and collective dynamics. Ration. Soc. 20(4), 399–443 (2008)

    Article  Google Scholar 

  35. Margetts, H.Z., John, P., Escher, T., Reissfelder, S.: Social information and political participation on the Internet: an experiment. Eur. Polit. Sci. Rev. 3(3), 321–344 (2011)

    Article  Google Scholar 

  36. Margetts, H.Z., John, P., Hale, S.A., Reissfelder, S.: Leadership without leaders? Starters and followers in online collective action. Polit. Stud. 63, 278–299 (2013)

    Article  Google Scholar 

  37. Rogers, E.: Diffusion of Innovations. Free Press, New York (1962)

    Google Scholar 

  38. Rothkopf, E.Z., Billington, M.J.: Goal-guided learning from text: inferring a descriptive processing model from inspection times and eye movements. J. Educ. Psychol. 71(3), 310 (1979)

    Article  Google Scholar 

  39. Salganik, M.J., Dodds, P.S., Watts, D.J.: Experimental study of inequality and unpredictability in an artificial cultural market. Science 311(5762), 854–856 (2006)

    Article  Google Scholar 

  40. Staab, S., Domingos, P., Golbeck, J., Ding, L., Finin, T., Joshi, A., Nowak, A.: Social networks applied. IEEE Intell. Syst. 20(1), 80–93 (2005)

    Article  Google Scholar 

  41. Sun, E., Rosenn, I., Marlow, C., Lento, T.: Gesundheit! modeling contagion through facebook news feed. In: Proceedings of International AAAI Conference on Weblogs and Social Media (2009)

    Google Scholar 

  42. Valente, T.W.: Network Models of the Diffusion of Innovations, vol. 2. Hampton Press, Cresskill (1995)

    Google Scholar 

  43. Van den Bulte, C., Lilien, G.L.: Medical innovation revisited: social contagion versus marketing effort. Am. J. Sociol. 106(5), 1409–1435 (2001)

    Article  Google Scholar 

  44. Watts, D.J.: A simple model of global cascades on random networks. Proc. Nat. Acad. Sci. 99(9), 5766–5771 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  45. Weng, L., Menczer, F., Ahn, Y.Y.: Predicting successful memes using network and community structure. In: ICWSM, March 2014

    Google Scholar 

  46. Wright, S.: E-petitions. In: Handbook of Digital Politics, p. 136 (2015). Chapter 9

    Google Scholar 

  47. Wright, S.: Success and online political participation: the case of Downing Street E-petitions. Inf. Commun. Soc. 19(6), 843–857 (2016)

    Article  Google Scholar 

  48. Yasseri, T., Hale, S.A., Margetts, H.: Modeling the rise in internet-based petitions (2013). arXiv preprint arXiv:1308.0239

  49. Young, H.P.: Innovation diffusion in heterogeneous populations: contagion, social influence, and social learning. Am. Econ. Rev. 99(5), 1899–1924 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

We wish to thank Marek Hlavac for technical assistance, and Lee Ross and Howard Rheingold for timely and valuable feedback on an earlier version of this work (which was submitted by the first author as her masters thesis [7]), as well as three anonymous reviewers for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Todd Davies .

Editor information

Editors and Affiliations

Appendices

Appendix A: Signature Graphs for Individual Petitions

Fig. 3.
figure 3

Temporal distribution of 5 randomly chosen petitions which did not reach the 100,000 signature mark.

Fig. 4.
figure 4

Temporal distribution of 5 randomly chosen petitions which succeeded in reaching the 100,000 signature mark

Appendix B: Aggregated Temporal Signature Graphs

Fig. 5.
figure 5

Adoption curves capturing daily accumulation of signatures in 3682 petitions across a 60-day period. A clear spike indicating a surge in support for a large number of petitions right before the 30-day deadline.

Fig. 6.
figure 6

Adoption curves capturing daily accumulation of signatures in 3682 petitions across a 60-day period. A clear spike indicating a surge in support for a large number of petitions right before the 30-day deadline.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Chan, C.L., Lai, J., Hooi, B., Davies, T. (2017). The Message or the Messenger? Inferring Virality and Diffusion Structure from Online Petition Signature Data. In: Ciampaglia, G., Mashhadi, A., Yasseri, T. (eds) Social Informatics. SocInfo 2017. Lecture Notes in Computer Science(), vol 10539. Springer, Cham. https://doi.org/10.1007/978-3-319-67217-5_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67217-5_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67216-8

  • Online ISBN: 978-3-319-67217-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics