Skip to main content

Part of the book series: SpringerBriefs in Earth Sciences ((BRIEFSEARTH))

  • 330 Accesses

Abstract

The Iznalloz (IZ) section is located in the km 13 of the Granada-Moreda railway scarpment (N 37° 23′ 24.4″; E 03° 29′ 19.5″), 3 km east of the village of Iznalloz (Granada Province, Figs. 3.1 and 4.1). The study section pertains to the Toarcian of the Zegrí Formation, and contains alternating marls and marly limestones in the lower part with nodular marly limestones (ammonitico rosso facies) in the upper part.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Berner RA (1969) Goethite stability and the origin of red beds. Geochim Cosmochim Acta 33:267–273

    Article  Google Scholar 

  • Bosellini A (1973) Modello geodinamico e paleotettonico delle Alpi Meridionali durante il Giurassico–Cretacico. Sue possibili applicazioni agli Appennini. In: Accordi B (ed) Moderne vedute sulla Geologia dell’Appennino. Accademia Nazionale Lincei, Quaderni 183:163–205

    Google Scholar 

  • Boulila S, Galbrum B, Huret E, Hinnov LA, Rouget I, Gardin S, Bartolini A (2014) Astronomical calibration of the Toarcian Stage: implications for sequence stratigraphy and duration of the early Toarcian OAE. Earth Planet Sci Lett 386:98–111

    Article  Google Scholar 

  • Braga JC, Comas MC, Delgado F, García-Hernández M, Jiménez AP, Linares A, Rivas P, Vera JA (1981) The Liassic Rosso Ammonitico facies in the subbetic zone (Spain). Genetic consideration. In: Farinacci A, Elmi S (eds) Rosso ammonitico symposium proceedings. Tecnocienza, Rome, pp 61–76

    Google Scholar 

  • Caracuel JE, Monaco P, Olóriz F (1997) Eventos de depósito y colonización del substrato en facies ammonitico rosso (Subbético externo, Kimmeridgiense). Geogaceta 21:63–65

    Google Scholar 

  • Caracuel JE, Monaco P, Olóriz F (2000) Taphonomic tools to evaluate sedimentation rates and stratigraphic completeness in rosso ammonitico facies (epioceanic tethyan Jurassic). Riv Ital Paleontol Stratigr 106:353–368

    Google Scholar 

  • Cecca F, Fourcade E, Azéma J (1992) The disappearance of the “Ammonitico Rosso”. Palaeogeogr Palaeoclimatol Palaeoecol 99:55–70

    Article  Google Scholar 

  • Chester R, Baxter GB, Behairy AKA, Connor K, Cross D, Elderfield H, Padgham RC (1977) Soil-sized eolian dusts from the lower troposphere of the eastern Mediterranean Sea. Mar Geol 24:201–217

    Article  Google Scholar 

  • Comas MC, Olóriz F, Tavera JM (1981) The red nodular limestones (Ammonitico Rosso) and associated facies: a key for settling slopes or swell areas in the Subbetic Upper Jurassic submarine topography (southern Spain). In: Farinacci A, Elmi S (eds) Rosso ammonitico symposium proceedings. Tecnocienza, Rome, pp 113–136

    Google Scholar 

  • Coudray J, Michel D (1981) Analyse sédimentologique des “calcaires noduleux” qui encadrent les radiolarites du dinantien de la Montagne Noire (France) et apport des donnes expérimentales a la compréhension de leur genèse. In: Farinacci A, Elmi S (eds) Proceedings Rosso Ammonitico Symposium. Tecnoscienza, Rome, pp 149–167

    Google Scholar 

  • D’Argenio B (1974) Le Piattaforme Carbonatiche Periadriatiche. Una rassegna di problemi nel quadro geodinámico del’area mediterranea. Mem Soc Geol Ital 13:1–28

    Google Scholar 

  • Dera G, Pellenard P, Neige P, Deconinck JF, Puceat E, Dommergues JL (2009) Distribution of clay minerals in Early Jurassic Peritethyan seas: palaeoclimatic significance inferred from multiproxy comparisons. Palaeogeogr Palaeoclimatol Palaeoecol 271:39–51

    Article  Google Scholar 

  • Dera G, Brigaud B, Monna F, Laffont R, Puceat E, Deconinck JF, Pellenard P, Joachimski MM, Durlet C (2011) Climatic ups and downs in a disturbed Jurassic world. Geology 39:215–218

    Article  Google Scholar 

  • Dercourt J, Zonenshain LP, Ricou LE, Kazmin VG, Le Pichon X, Knipper AL, Grandjacquet C, Sborshchikov IM, Boulin J, Sorokhtin O, Geyssant J, Lepvrier C, Biju-Duval B, Sibuet JC, Savostin LA, Westphal M, Lauer JP (1985) Presentation de 9 cartes paléogéographiques a 1:20.000.000 s’étendent de l’Atlantique au Pamir pour la période du Lias à l’actuel. Bull Soc Géol Fr 8:635–652

    Google Scholar 

  • El Kadiri K (2002) “Tectono-eustatic sequences” of the Jurassic successions from the Dorsale Calcaire (Internal Rif, Morocco): evidence from an eustatic and tectonic scenario. Geol Romana 36:71–103

    Google Scholar 

  • Eller MG (1981) The red chalk of Eastern England: a Cretaceous analogue of rosso ammonitico. In: Farinacci A, Elmi S (eds) Rosso ammonitico symposium proceedings. Tecnocienza, Rome, pp 207–231

    Google Scholar 

  • Elmi S (1981) Sédimentation rythmique et organisation séquentielle dans les ammonitico-rosso et les facies associes du Jurassique de la Méditerranée Occidentale. Interpretation des grumeaux et des nodules. In: Farinacci A, Elmi S (eds) Rosso ammonitico symposium proceedings. Tecnocienza, Rome, pp 251–299

    Google Scholar 

  • Elmi S, Almeras Y (1984) Physiography, palaeotectonics and palaeoenvironments as controls of changes in ammonite and brachiopod communities (an example from the early and middle Jurassic of western Algeria). Palaeogeogr Palaeoclimatol Palaeoecol 47:347–360

    Article  Google Scholar 

  • Elmi S, Ameur M (1984) Quelques environnements des facies noduleux mésogées. Geol Romana 23:13–22

    Google Scholar 

  • Ettaki M, Chellaï EH (2005) Le Toarcien inférieur du Haut Atlas de Todrha-Dadès (Maroc): sedimentologie et lithostratigraphie. C R Géosci 337:814–823

    Article  Google Scholar 

  • Ettaki M, Chellaï EH, Milhi A, Sadki D, Boudchiche L (2000) Le passage Lias moyen-Lias supérieur dans la région de Todrha-Dadès: événements biosédimentaires et géodynamiques (Haut Atlas central, Maroc). C R Acad Sci, Paris 331:667–674

    Google Scholar 

  • Funk H, Oberhanski R, Pfiffner A, Schmid S, Wildi W (1987) The evolution of the northern margin of Tethys in eastern Switzerland. Episodes 10:102–106

    Google Scholar 

  • Fürsich FT (1973) Thalassinoides and the origin of nodular limestone in the Corallian Beds (Upper Jurassic) of southern England. Neues Jb Geol Paläontol Abh 3:136–156

    Google Scholar 

  • Fürsich FT (1979) Genesis, environments, and ecology of Jurassic hardgrounds. Neues Jb Geol Paläontol Abh 158:1–163

    Google Scholar 

  • Gómez JJ, Fernández-López SR (1994) Condensation processes in shallow platforms. Sed Geol 92:147–159

    Article  Google Scholar 

  • Gong Y (2001) Trace fossils from the flysch sequences of the Silurian, Carboniferous and Triassic of the Tianshan and Kunlun-Qinling orogenic belts of northwestern China. Acta Palaeontol Sin 40:177–188

    Google Scholar 

  • Gradstein FM, Ogg JG, Smith AG (2004) A geologic time scale 2004. Cambridge University Press

    Google Scholar 

  • Hallam A (1967) Sedimentology and palaeogeographic significance of certain red limestones and associated beds in the Lias of the Alpine region. Scott J Geol 3:195–220

    Article  Google Scholar 

  • Hallam A (1988) A reevaluation of Jurassic eustasy in the light of new data and the revised Exxon curve. SEPM Special Publication 42, pp 261–273

    Google Scholar 

  • Hallam A (2001) A review of the broad pattern of Jurassic sea-level changes and their possible causes in the light of current knowledge. Palaeogeogr Palaeoclimatol Palaeoecol 167:23–37

    Article  Google Scholar 

  • Han Y, Pickerill RK (1994) Phycodes templus isp. nov. from the Lower Devonian of northwestern New Brunswick, eastern Canada. Atlantic Geol 30:37–46

    Google Scholar 

  • Haq BU, Hardenbol J, Vail PR (1987) Chronology of fluctuating sea level since the Triassic. Science 235:1156–1167

    Article  Google Scholar 

  • Helm C (2005) Riffe und fazielle Entwicklung der florigemma-Bank (Korallenoolith, Oxfordium) im Süntel und östlichen Wesergebirge (NW-Deustchland). Geol Beitr Hannover 7:1–39

    Google Scholar 

  • Hermoso M, Pellenard P (2014) Continental weathering and climatic changes inferred from clay mineralogy and paired carbon isotopes across the early to middle Toarcian in the Paris Basin. Palaeogeogr Palaeoclimatol Palaeoecol 399:385–393

    Article  Google Scholar 

  • Jacquin TH, De Graciansky PC (1998) Major transgressive/regressive cycles: the stratigraphic signature of European basin development. In: De Graciansky PC, Hardenbol J, Jacquin TH, Vail PR (eds) Mesozoic and Cenozoic Sequence Stratigraphy of Europena Basins. SEPM Special Publication 60, pp 15–29

    Google Scholar 

  • Jenkyns HC (1971) The genesis of condensed sequences in the Tethyan Jurassic. Lethaia 4:327–352

    Article  Google Scholar 

  • Jiménez AP (1986) Estudio paleontológico de los ammonites del Toarciense inferior y medio de las Cordilleras Béticas (Dactylioceratidae e Hildoceratidae). Ph.D. Thesis, Universidad de Granada

    Google Scholar 

  • Kennedy WJ, Garrison RE (1975) Morphology and genesis of nodular chalks and hardgrounds in the Upper Cretaceous of southern England. Sedimentology 22:311–386

    Article  Google Scholar 

  • Krencker FN, Bodin S, Suan G, Heimhofer U, Kabiri L, Immenhauser A (2015) Toarcian extreme warmth led to tropical cyclone intensification. Earth Planet Sci Lett 425:120–130

    Article  Google Scholar 

  • Mángano MG, Carmona NB, Buatois LA, Muñiz Guinea F (2005) A new ichnospecies of Arthrophycus from the Upper Cambrian-Lower Tremadocian of northwest Argentina: implications for the Arthrophycid lineage and potential in ichnostratigraphy. Ichnos 12:179–190

    Article  Google Scholar 

  • Marok A, Reolid M (2012) Lower Jurassic sediments from the Rhar Roubane Mountains (Western Algeria): Stratigraphic precisions and synsedimentary block-faulting. J Afr Earth Sc 76:50–65

    Article  Google Scholar 

  • Mattioli E, Erba E (1999) Synthesis of calcareous nannofossil events in tethyan Lower and Middle Jurassic successions. Riv Ital Paleontol Stratigr 105:343–376

    Google Scholar 

  • Mattioli E, Pittet B, Bucefalo-Palliani R, Röhl HJ, Schmid-Röhl A, Morettini E (2004) Phytoplankton evidence for the timing and correlation of palaeoceanographical changes during the early Toarcian oceanic anoxic event (Early Jurassic). J Geol Soc London 161:685–693

    Article  Google Scholar 

  • Mattioli E, Plancq J, Boussaha M, Duarte LV, Pittet B (2013) Calcareous nannofossil biostratigraphy: new data from the Lower Jurassic of the Lusitanian Basin. Comunicações Geológicas 100, Especial I:69–76

    Google Scholar 

  • McLaughlin PI, Brett CE (2004) Sequence stratigraphy and stratinomy of marine hardgrounds: examples from the Middle Paleozoic of Eastern Laurentia. Geological Society of America, Abstracts with programs 36, p 110

    Google Scholar 

  • Miller W III (2001) Thalassinoides-Phycodes compound burrow systems in Paleocene deep-water limestone, Southern Alps of Italy. Palaeogeogr Palaeoclimatol Palaecoecol 170:149–156

    Article  Google Scholar 

  • Monaco P, Trecci T (2014) Ichnocoenosis in the macigno turbidite basin system, lower miocene, trasimero (Umbrian apennines, Italy). Ital J Geosci 133:116–130

    Article  Google Scholar 

  • Monaco P, Caracuel JE, Giannetti A, Soria JM, Yébenes A (2007) Thalassinoides and Ophiomorpha as cross-facies trace fossils of crustaceans from shallow-to-deep-water environments: Mesozoic and Tertiary examples from Italy and Spain. In: 3rd Symposium on Mesozoic and Cenozoic Decapod Crustaceans, Museo di Storia Naturale di Milano, pp 79–82

    Google Scholar 

  • Mouterde R, Linares A (1960) Nuevo yacimiento fosilífero del Lías superior, cerca de Iznalloz (Provincia de Granada, Cordillera Bética). Notas Comun IGME 58:101–104

    Google Scholar 

  • Mullins HT, Neumann AC, Wilber RJ, Boardman MR (1980) Nodular carbonate sediment on Bahamian slopes: possible precursor to nodular limestones. J Sediment Petrol 50:117–131

    Google Scholar 

  • Nieto LM, Ruiz-Ortiz PA Rey J, Benito MI (2008) Strontium-isotope stratigraphy as a constraint on the age of condensed levels: examples from the Jurassic of the Subbetic Zone (southern Spain). Sedimentology 55:1–29

    Google Scholar 

  • Nieto LM, Rodríguez-Tovar FJ, Molina JM, Reolid M, Ruiz-Ortiz PA (2014) Unconformity surfaces in pelagic carbonate environments: a case from the Middle Bathonian of the Betic Cordillera, SE Spain. Ann Soc Geol Pol 84:281–295

    Google Scholar 

  • Ogg J, Hinnov LA (2012) The Jurassic period. In: Gradstein F, Ogg J, Ogg G, Smith D (eds) A geologic time scale 2012. Elsevier, pp 731–791

    Google Scholar 

  • Oliveira LCV, Perilli N, Duarte LV (2007) Calcareous nannofossil assemblages around the Pliensbachian/Toarcian boundary in the reference section of Peniche (Portugal). Ciências Terra (UNL) 16:45–50

    Google Scholar 

  • Olóriz F, Reolid M, Rodríguez-Tovar FJ (2012) Palaeogeography and relative sea-level history forcing eco-sedimentary contexts in Late Jurassic epicontinental shelves (Prebetic Zone, Betic Cordillera): an ecostratigraphic approach. Earth Sci Rev 111:154–178

    Article  Google Scholar 

  • Palomo I (1987) Mineralogía y geoquímica de sedimentos pelágicos del Jurásico inferior de las Cordilleras Béticas (SE de España). Ph.D. Thesis, Universidad de Granada

    Google Scholar 

  • Parisi G, Ortega-Huertas M, Nocchi M, Palomo I, Monaco P, Ruiz F (1996) Stratigraphy and geochemical anomalies of the Early Toarcian oxygen-poor interval in the Umbria-Marche Apennines (Italy). Geobios 29:469–484

    Article  Google Scholar 

  • Petrash DA, Lalonde SV, Gingras MK, Konhauser KO (2010) A surrogate approach to studying the chemical reactivity of burrow mucous lining in marine sediments. Palaios 26:594–600

    Article  Google Scholar 

  • Reolid M (2014) Stable isotopes on foraminifera and ostracods for interpreting incidence of the Toarcian Oceanic Anoxic Event in Westernmost Tethys: role of water stagnation and productivity. Palaeogeogr Palaeoclimatol Palaeoecol 395:77–91

    Article  Google Scholar 

  • Reolid M, Nagy J, Rodríguez-Tovar FJ, Olóriz F (2008) Foraminiferal assemblages as palaeoenvironmental bioindicators in Late Jurassic epicontinental platforms: relation with trophic conditions. Acta Palaeontol Pol 53:706–722

    Article  Google Scholar 

  • Reolid M, Molina JM, Löser H, Navarro V, Ruiz-Ortiz PA (2009) Coral biostromes of the Middle Jurassic from the Subbetic (Betic Cordillera, southern Spain): facies, coral taxonomy, taphonomy and palaeoecology. Facies 55:575–593

    Article  Google Scholar 

  • Reolid M, Nieto LM, Rey J (2010) Taphonomy of cephalopod assemblages from Middle Jurassic hardgrounds of pelagic swells (South-Iberian palaeomargin, Western Tethys). Palaeogeogr Palaeoclimatol Palaeoecol 292:257–271

    Article  Google Scholar 

  • Reolid M, Sebane A, Rodríguez-Tovar FJ, Marok A (2012a) Foraminiferal morphogroups as a tool to approach the Toarcian Anoxic Event in the Western Saharan Atlas (Algeria). Palaeogeogr Palaeoclimatol Palaeoecol 323–325:87–99

    Google Scholar 

  • Reolid M, Rodríguez-Tovar FJ, Marok A, Sebane A (2012b) The Toarcian Oceanic Anoxic Event in the Western Saharan Atlas, Algeria (North African paleomargin): role of anoxia and productivity. Geol Soc Am Bull 124:1646–1664

    Google Scholar 

  • Reolid M, Chakiri S, Bejjaji Z (2013a) Adaptative strategies of the Toarcian benthic foraminiferal assemblages from the Middle Atlas (Morocco): palaeoecological implications. J Afr Earth Sc 84:1–12

    Article  Google Scholar 

  • Reolid M, Nieto LM, Sánchez-Almazo IM (2013b) Caracterización geoquímica de facies pobremente oxigenadas en el Toarciense inferior (Jurásico inferior) del Subbético Externo. Rev Soc Geol Esp 26:69–84

    Google Scholar 

  • Reolid M, Marok A, Sebane A (2014a) Foraminiferal assemblages and geochemistry for interpreting the incidence of Early Toarcian environmental changes in North Gondwana palaeomargin (Traras Mountains, Algeria). J Afr Earth Sc 95:105–122

    Article  Google Scholar 

  • Reolid M, Mattioli E, Nieto LM, Rodríguez-Tovar FJ (2014b) The Early Toarcian Ocanic Anoxic Event in the External Subbetic (Southiberian Palaeomargin, Westernmost Tethys): geochemistry, nannofossils and ichnology. Palaeogeogr Palaeoclimatol Palaeoecol 411:79–94

    Article  Google Scholar 

  • Reolid M, Rivas P, Rodríguez-Tovar FJ (2015) Toarcian ammonitico rosso facies from the South Iberian paleomargin (Betic Cordillera, southern Spain): paleoenvironmental reconstruction. Facies 61:22. doi:10.1007/s10347-015-0447-3

  • Rita P, Reolid M, Duarte LV (2016) Benthic foraminiferal assemblages record major environmental perturbations during the Late Pliensbachian—Early Toarcian interval in the Peniche GSSP, Portugal. Palaeogeogr Palaeoclimatol Palaeoecol 454:267–281

    Article  Google Scholar 

  • Rivas P (1972) Estudio paleontológico-estratigráfico del Lías (Sector Central de las Cordilleras Béticas). Ph.D. Thesis, Universidad de Granada, Short Publication 29, p 77

    Google Scholar 

  • Rodríguez-Tovar FJ, Nieto LM (2013) Composite trace fossil assemblage in a distal carbonate setting from the Tethys (Middle Jurassic, Betic Cordillera, Southern Spain). Ichnos 20:43–53

    Article  Google Scholar 

  • Rodríguez-Tovar FJ, Reolid M (2013) Environmental conditions during the Toarcian Oceanic Anoxic Event (T-OAE) in the westernmost Tethys: influence of the regional context on a global phenomenon. Bull Geosci 88:697–712

    Article  Google Scholar 

  • Rodríguez-Tovar FJ, Uchman A (2010) Ichnofabric evidence for the lack of bottom anoxia during the lower Toarcian Oceanic Anoxic Event (T-OAE) in the Fuente de la Vidriera section, Betic Cordillera, Spain. Palaios 25:576–587

    Article  Google Scholar 

  • Rozic B, Smuc A (2011) Gravity-flow deposits in the Toarcian Perbla formation (Slovenian basin, NW Slovenia). Riv Ital Paleontol Stratigr 117:283–294

    Google Scholar 

  • Ruebsam W, Münzberger P, Schwark L (2014) Chronology of the Early Toarcian environmental crisis in the Lorraine Sub-basin (NE Paris Basin). Earth Planet Sci Lett 404:273–282

    Article  Google Scholar 

  • Sandoval J, Bill M, Aguado R, O’Dogherty L, Rivas P, Morard A, Guex J (2012) The Toarcian in the Subbetic basin (southern Spain): bio-events (ammonite and calcareous nannofossils) and carbon-isotope stratigraphy. Palaeogeogr Palaeoclimatol Palaeoecol 342–343:40–63

    Article  Google Scholar 

  • Santantonio M (1993) Facies associations and evolution of pelagic carbonate platform/basin systems: examples from the Italian Jurassic. Sedimentology 40:1039–1067

    Article  Google Scholar 

  • Santantonio M (1994) Pelagic carbonate platforms in the geologic record: their classification, and sedimentary and paleotectonic evolution. AAPG Bull 78:122–141

    Google Scholar 

  • Savrda CE (2012) Chalk and related deep-marine carbonates. In: Knaust D, Bromley RG (eds) Trace fossils as indicators of sedimentary environments. Development in Sedimentology 64, pp 777–806

    Google Scholar 

  • Soussi M, Ben Ismail MH (2000) Platform collapse and pelagic seamount facies: Jurassic development of central Tunisia. Sed Geol 133:93–113

    Article  Google Scholar 

  • Soussi M, Enay R, Mangold C, Turki MM (2000) The Jurassic events and their sedimentary and stratigraphic records on the Southern Tethyan margin in Central Tunisia. Mém Mus Natl d’Hist Nat, Paris 182:57–92

    Google Scholar 

  • Uchman A, Tchoumatchenco P (2003) A mixed assemblage of deep-sea and shelf trace fossils from the Lower Cretaceous (Valanginian) Kamchia Formation in the Troyan Region, Central Fore-Balkan, Bulgaria. Ann Soc Geol Pol 73:27–34

    Google Scholar 

  • Vera JA (1988) Evolución de los sistemas de depósito en el Margen Ibérico de la Cordillera Bética. Rev Soc Geol Esp 1:373–391

    Google Scholar 

  • Vogel K, Bundschuh M, Glaub I, Hofmann K, Radtke G, Schmidt H (1995) Hard substrate ichnocoenoses and their relations to light intensity and marine bathymetry. Neues Jb Geol Paläontol Abh 195:49–61

    Article  Google Scholar 

  • Winterer EL, Bosellini A (1981) Subsidence and sedimentation on Jurassic passive continental margin, Southern Alps, Italy. AAPG Bull 65:394–421

    Google Scholar 

  • Yelles-Chaouche AK, Ait-Ouali R, Bracène R, Derder MEM, Djellit H (2001) Chronologie de l’ouverture du bassin des Ksour (Atlas Saharien, Algérie) au début du Mésozoïque. Bull Soc Géol Fr 172:285–293

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matías Reolid .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Cite this chapter

Reolid, M., Molina, J.M., Nieto, L.M., Rodríguez-Tovar, F.J. (2018). Median Subbetic Outcrops. In: The Toarcian Oceanic Anoxic Event in the South Iberian Palaeomargin . SpringerBriefs in Earth Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-67211-3_4

Download citation

Publish with us

Policies and ethics