Skip to main content

Part of the book series: SpringerBriefs in Earth Sciences ((BRIEFSEARTH))

  • 340 Accesses

Abstract

The Fuente Vidriera (FV) section is located on a valley slope (38° 03′ 19.8″ N; 02° 07′ 01.7″ W), 15 km west of the village of Barranda (Murcia Province), near Caravaca de la Cruz (Fig. 3.1). The study section pertains to the Upper Pliensbachian to uppermost Toarcian of the Zegrí Formation, and contains alternating marls and marly limestones in the lower part with nodular marly limestones in the upper part.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson TF, Arthur MA (1983) Stable isotopes of oxygen and carbon and their application to sedimentologic and paleoenvironmental problems. In: Arthur MA (ed) Stable isotopes in sedimentary geology. SEPM Short Course, 10:1–151

    Google Scholar 

  • Baeza-Carratalá JF, Reolid M, García Joral F (2017) New deep-water brachiopod resilient assemblage from the South-Iberian Palaeomargin (Western Tethys) and its significance for the brachiopod adaptive strategies around the Early Toarcian Mass Extinction Event. Bull Geosci (in press)

    Google Scholar 

  • Bailey TR, Rosenthal Y, McArthur JM, van de Schootbrugge B, Thirlwall MF (2003) Paleoceanographic changes of the Late Pliensbachian-Early Toarcian interval: a possible link to the genesis of an anoxic event. Earth Planet Sci Lett 212:307–320

    Article  Google Scholar 

  • Baturin GN (2002) Uranium and phosphorous in deep-sea clay from the Pacific Ocean. Oceanology 42:723–730

    Google Scholar 

  • Berner RA, Raiswell R (1983) Burial of organic carbon and pyrite sulfur in sediments over Phanerozoic time: a new theory. Geochim Cosmochim Acta 47:855–862

    Article  Google Scholar 

  • Bodin S, Mattioli E, Frölich S, Marshall JD, Boutib L, Lahsini S, Redfern J (2010) Toarcian carbon isotope shifts and nutrient changes from the Northern margin of Gondwana (High Atlas, Morocco, Jurassic): palaeoenvironmental implications. Palaeogeogr Palaeoclimatol Palaeoecol 297:377–390

    Article  Google Scholar 

  • Bond DPG, Wignall PB (2010) Pyrite framboid study of marine Permian-Triassic boundary sections: a complex anoxic event and its relationship to contemporaneous mass extinction. GSA Bull 122:1265–1279

    Article  Google Scholar 

  • Braga JC (1983) Ammonites del Domerense de la Zona Subbética (Cordilleras Béticas, Sur de España). Ph.D. Thesis, Universidad de Granada

    Google Scholar 

  • Broecker WS, Peng T-H (1982) Tracers in the sea. Eldigio Press, Columbia University, Palisades, New York

    Google Scholar 

  • Bucefalo-Palliani R, Mattioli E (1995) Ecology of dinoflagellate cyst and calcareous nannofossils from bituminous facies of the Early Toarcian, central Italy. 3rd Workshop: Black Shales Models, European Palaeontological Association, Dotternhausen, Germany

    Google Scholar 

  • Bucefalo-Palliani R, Mattioli E, Riding JB (2002) The response of marine phytoplankton and sedimentary organic matter to the Early Toarcian (Lower Jurassic) oceanic anoxic event in northern England. Mar Micropaleontol 46:223–245

    Article  Google Scholar 

  • Busnardo R (1979) Prebétique et Subbétique de Jaén à Lucena (Andalusie). Lias. Documents Laboratoires Geologie Faculté Sciences Lyon 74, p 140

    Google Scholar 

  • Calvert SE, Pedersen TF (1993) Geochemistry of recent oxic and anoxic marine sediments: implications for the geological record. Mar Geol 113:67–88

    Article  Google Scholar 

  • Caniçó A, Duarte LV, Rocha F, Reolid M, Terroso D (2015) Palaeoenvironmenal meaning of clay minerals assemblages across the Late Pliensbachian-Early Toarcian (Early Jurassic) of Iberian Peninsula: Lusitanian, Algarve and Subbetic basins. Euroclay Programme and Abstracts, p 115

    Google Scholar 

  • Casellato CE, Erba E (2015) Calcareous nannofossil biostratigraphy and paleoceanography of the Toarcian Oceanic Anoxic Event at Colle di Sogno (Southern Alps, Northern Italy). Riv Ital Paleontol Stratigr 121:297–327

    Google Scholar 

  • Caswell BA, Coe AL (2012) A high-resolution shallow marine record of the Toarcian (Early Jurassic) Oceanic Anoxic Event from the East Midlands Shelf, UK. Palaeogeogr Palaeoclimatol Palaeoecol 365–366:124–135

    Article  Google Scholar 

  • Cheel RJ, Leckie DA (1993) Hummocky cross-stratification. In: Wright PW (ed) Sedimentology review/1. Blackwell Scientific Publication, London, pp 103–122

    Chapter  Google Scholar 

  • Chester R, Baxter GB, Behairy AKA, Connor K, Cross D, Elderfield H, Padgham RC (1977) Soil-sized eolian dusts from the lower troposphere of the eastern Mediterranean Sea. Mar Geol 24:201–217

    Article  Google Scholar 

  • Cohen AS, Coe AL, Harding SM, Scwark L (2004) Osmium isotope evidence for the regulation of atmospheric CO2 by continental weathering. Geology 32:157–160

    Article  Google Scholar 

  • Comas MC, Puga E, Bargossi GM, Morten L, Rossi PL (1986) Paleogeography, sedimentation and volcanism of the central Subbetic Zone, Betic Cordilleras, Southeastern Spain. Neues Jb Geol Paläontol Monat 7:385–404

    Google Scholar 

  • Comas-Rengifo MJ, Duarte LV, García-Joral F, Goy A (2013) Los braquiópodos del Toarciense Inferior (Jurásico) en el área de Rabaçal-Condeixa (Portugal): distribución estratigráfica y paleobiogeografía. Comun Geol 100(Especial I):37-42

    Google Scholar 

  • de Graciansky PC, Jacquin T, Hesselbo SP (1998) The Ligurian cycle: an overview of Lower Jurassic 2nd-order transgressive/regressive facies cycles in western Europe. In: Mesozoic and Cenozoic sequence stratigraphy of European Basins. SEPM Special Publication, 60, pp 467–479

    Google Scholar 

  • Dera G, Donnadieu Y (2012) Modeling evidences for global warming, Arctic seawater freshening, and sluggish oceanic circulation during the Early Toarcian anoxic event. Paleoceanography 27:PA2211

    Google Scholar 

  • Dera G, Pucéat E, Pellenard P, Neige P, Delsate D, Joachimski MM, Reisberg L, Martínez M (2009) Water mass exchange and variations in seawater temperature in the NW Tethys during the Early Jurassic: evidence from neodymium and oxygen isotopes of fish teeth and belemnites. Earth Planet Sci Lett 286:198–207

    Article  Google Scholar 

  • Duarte LV (1997) Facies analysis and sequential evolution of the Toarcian-Lower Aalenian series in the Lusitanian Basin (Portugal). Comun Inst Geol Min 83:65–94

    Google Scholar 

  • Duarte LV (1998) Clay minerals and geochemical evolution in the Toarcian-Lower Aalenian of the Lusitanian Basin. Cuad Geol Ibérica 24:69–98

    Google Scholar 

  • Duarte LV, Soares AF (1993) Eventos de natureza tempestítica e turbiditíca no Toarciano inferior da Bacia Lusitaniana (Sector Norte). Cad Geogr Fac Let Univ Coimbra 12:89–95

    Google Scholar 

  • Duarte LV, Soares AF (2002) Litostratigrafia das series margo-calcárias do Jurásico inferior da Bacia Lusitánica (Portugal). Commun Inst Geol Min 89:135–154

    Google Scholar 

  • Dustira AM, Wignall PB, Joachimski M, Blomeier D, Hartkopf-Fröder C, Bond DPG (2013) Gradual onset of anoxia across the Permian-Triassic boundary in Svalbard, Norway. Palaeogeogr Palaeoclimatol Palaeoecol 374:303–313

    Article  Google Scholar 

  • Ekdale AA, Bromley RG (1984) Sedimentology and ichnology of the Cretaceous-Tertiary boundary in Denmark: implications for the causes of the terminal Cretaceous extinction. J Sediment Petrol 54:681–703

    Google Scholar 

  • Elmi S (1996) Stratigraphic correlations of the main Jurassic events in the Western Mediterranean Tethys (western Algeria and eastern Morocco). Geores Forum 1–2:343–357

    Google Scholar 

  • Ennyu A, Arthur MA, Pagani M (2002) Fine-fraction carbonate stable isotopes as indicators of seasonal shallow mixed-layer paleohydrography. Mar Micropaleontol 46:317–342

    Article  Google Scholar 

  • Erba E (2004) Calcareous nannofossils and Mesozoic oceanic anoxic events. Mar Micropaleontol 52:85–106

    Article  Google Scholar 

  • Fohrer B, Samankassou E (2005) Paleoecological control of ostracod distribution in a Pennsylvanian Auernig cyclothem of the Carnic Alps, Austria. Palaeogeogr Palaeoclimatol Palaeoecol 225:317–330

    Article  Google Scholar 

  • Gahr ME (2005) Response of Lower Toarcian (Lower Jurassic) macrobenthos of the Iberian Peninsula to sea level changes and mass extinction. J Iberian Geol 31:197–215

    Google Scholar 

  • Gallego-Torres D, Martínez-Ruiz F, Paytan A, Jiménez-Espejo FJ, Ortega-Huertas M (2007) Pliocene-Holocene evolution of depositional conditions in the eastern Mediterranean: role of anoxia vs. productivity at time of sapropel deposition. Palaeogeogr Palaeoclimatol Palaeoecol 246:424–439

    Article  Google Scholar 

  • Gallego-Torres D, Martínez-Ruiz F, De Lange GJ, Jiménez-Espejo FJ, Ortega-Huertas M (2010) Trace-elemental derived paleoceanographic and paleoclimatic conditions for Pleistocene Eastern Mediterranean sapropels. Palaeogeogr Palaeoclimatol Palaeoecol 293:78–89

    Article  Google Scholar 

  • Gallego-Torres D, Reolid M, Nieto-Moreno V, Martínez-Casado FJ (2015) Pyrite framboids size distribution as a record for relative variations in sedimentation rate: an example on the Toarcian Oceanic Anoxic Event in Southiberian Palaeomargin. Sed Geol 330:59–73

    Article  Google Scholar 

  • García Joral F, Goy A (2009) Toarcian (Lower Jurassic) brachiopods in Asturias (Northern Spain): stratigraphic distribution, critical events and palaeobiogeography. Geobios 42:255–264

    Article  Google Scholar 

  • García Joral F, Gómez JJ, Goy A (2011) Mass extinction and recovery of the early Toarcian (early Jurassic) brachiopods linked to climate change in northern and central Spain. Palaeogeogr Palaeoclimatol Palaeoecol 302:367–380

    Article  Google Scholar 

  • García-Hernández M, López-Garrido AC, Martín-Algarra A, Molina JM, Ruiz-Ortiz PA, Vera JA (1989) Las discontinuidades mayores del Jurásico de las Zonas Externas de las Cordilleras Béticas: Análisis e interpretación de los ciclos sedimentarios. Cuad Geol Ibérica 13:35–52

    Google Scholar 

  • Gatto R, Monari S, Neige P, Pinard JD, Weis R (2015) Gastropods from upper Pliensbachian-Toarcian (Lower Jurassic) sediments of Causses basin, southern France and their recovery after the early Toarcian anoxic event. Geol Mag 152:871–901

    Article  Google Scholar 

  • Gautier F, Odin GS (1985) Volcanisme Jurassique du sud de l’Aragon (Espagne). Bulletin de Liaison et Information, I.G.C.P. Project 196, offset Paris, 5:34–38

    Google Scholar 

  • Gómez JJ, Goy A (2000) Definition and organization of limestone-marls cycles in the Toarcian of the Northern and East-Central part of the Iberian Subplate (Spain). Geores Forum 6:301–310

    Google Scholar 

  • Gómez JJ, Goy A (2005) Late Triassic and Early Jurassic palaeogeographic evolution and depositional cycles of the Western Tethys Iberian platform system (Eastern Spain). Palaeogeogr Palaeoclimatol Palaeoecol 222:77–94

    Article  Google Scholar 

  • Gómez JJ, Goy A (2011) Warming-driven mass extinction in the Early Toarcian (Early Jurassic) of northen and central Spain. Correlation with other time-equivalent European sections. Palaeogeogr Palaeoclimatol Palaeoecol 306:176–195

    Article  Google Scholar 

  • Hallam A (1986) The Pliensbachian and Tithonian extinction events. Nature 319:765–768

    Article  Google Scholar 

  • Hallam A (1987) Radiations and extinctions in relation to environmental change in the marine Lower Jurassic of northwest Europe. Paleobiology 13:152–168

    Article  Google Scholar 

  • Hallam A (2001) A review of the broad pattern of Jurassic sea-level changes and their possible causes in the light of current knowledge. Palaeogeogr Palaeoclimatol Palaeoecol 167:23–37

    Article  Google Scholar 

  • Haq BU, Hardenbol J, Vail PR (1987) Chronology of fluctuating sea level since the Triassic. Science 235:1156–1167

    Article  Google Scholar 

  • Harazim D, van de Schootbrugge B, Sorichter K, Fiebig J, Weug A, Suan G, Oschmann W (2013) Spatial variability of watermass conditions within the European Epicontinental Seaway during the Early Jurassic (Pliensbachian–Toarcian). Sedimentology 60:359–390

    Article  Google Scholar 

  • Harries PJ, Little CTS (1999) The Early Toarcian (Early Jurassic) and the Cenomanian-Turonian (Late Cretaceous) mass extinctions: similarities and contrasts. Palaeogeogr Palaeoclimatol Palaeoecol 154:39–66

    Article  Google Scholar 

  • Helz GR, Miller CV, Charnock JM, Mosselmans JLW, Pattrick RAD, Garner CD, Vaughan DJ (1996) Mechanisms of molybdenum removal from the sea and its concentration in black shales: EXAFS evidences. Geochim Cosmochim Acta 60:3631–3642

    Article  Google Scholar 

  • Hermoso M, Minoletti F, Le Callonnec L, Jenkyns HC, Hesselbo SP, Rickaby REM, Renard M, de Rafaeli M, Emmanuel L (2009) Global and local forcing of Early Toarcian seawater chemistry: a comparative study of different paleoceanographic settings (Paris and Lusitanian basins). Paleoceanography 24:PA4208

    Google Scholar 

  • Hesselbo SP, Gröcke DR, Jenkyns HC, Bjerrum CJ, Farrimond P, Morgans-Bell HS, Green OR (2000) Massive dissociation of gas hydrate during a Jurassic oceanic anoxic event. Nature 406:392–395

    Article  Google Scholar 

  • Hesselbo SP, Jenkyns HC, Duarte LV, Oliveira LCV (2007) Carbon-isotope record of the Early Jurassic (Toarcian) Oceanic Anoxic Event from fossil wood and marine carbonate (Lusitanian Basin, Portugal). Earth Planet Sci Lett 253:455–470

    Article  Google Scholar 

  • Hylton MD, Hart MB (2000) Benthic foraminiferal response to Pliensbachian-Toarcian (Lower Jurassic) sea-level change and oceanic anoxia in NW Europe. Geores Forum 6:455–462

    Google Scholar 

  • Izumi K, Miyaji T, Tanabe K (2012) Early Toarcian (Early Jurassic) oceanic anoxic event recorded in the shelf deposits in the northwestern Panthalassa: evidence from the Nishinakayama Formation in the Toyora área, west Japan. Palaeogeogr Palaeoclimatol Palaeoecol 315–316:100–108

    Article  Google Scholar 

  • Jenkyns HC (1985) The Early Toarcian and Cenomanian-Turonian anoxic events in Europe: comparisons and contrasts. Geol Rundsch 74:505–518

    Article  Google Scholar 

  • Jenkyns HC (1988) The Early Toarcian (Jurassic) anoxic event: stratigraphic, sedimentary, and geochemical evidence. Am J Sci 288:101–151

    Article  Google Scholar 

  • Jenkyns HC (2003) Evidence for rapid climate change in the Mesozoic-Palaeogene greenhouse world. Philos Trans R Soc Lond A361:1885–1916

    Article  Google Scholar 

  • Jenkyns HC, Clayton CK (1997) Lower Jurassic epicontinental carbonates and mudstones from England and Wales: chemostratigraphic signals and the early Toarcian anoxic event. Sedimentology 44:687–706

    Article  Google Scholar 

  • Jenkyns HC, Géczy B, Marshall JD (1991) Jurassic manganese carbonates of central Europe and the early Toarcian anoxic event. J Geol 99:137–149

    Article  Google Scholar 

  • Jenkyns HC, Jones CE, Gröcke DR, Hesselbo SP, Parkinson DN (2002) Chemostratigraphy of the Jurassic System: applications, limitations and implications for palaeoceanography. J Geol Soc London 159:351–378

    Article  Google Scholar 

  • Jiménez AP (1986) Estudio paleontológico de los ammonites del Toarciense inferior y medio de las Cordilleras Béticas (Dactylioceratidae e Hildoceratidae). Ph.D. Thesis, Universidad de Granada

    Google Scholar 

  • Jiménez AP, Rivas P (2007) El OAE toarciense en la secuencia de la Fuente de la Vidriera, Zona Subbética, región de Caravaca (Murcia). In Aguirre J, Company M, Rodríguez-Tovar FJ (eds) XXIII Jornadas de la Sociedad Española de Paleontología, Caravaca, Field Trip Guidebook. Universidad de Granada, pp 3–16

    Google Scholar 

  • Jiménez AP, Jiménez de Cisneros C, Rivas P, Vera JA (1996) The early Toarcian anoxic event in the westernmost Tethys (Subbetic): paleogeographic and paleobiogeographic significance. J Geol 104:399–416

    Article  Google Scholar 

  • Jiménez-Espejo FJ, Martínez-Ruiz F, Sakamoto T, Iijima K, Gallego-Torres D, Harada N (2007) Paleoenvironmental changes in western Mediterranean since the last glacial maximum: high resolution multiproxy record from the Algero-Balearic basin. Palaeogeogr Palaeoclimatol Palaeoecol 246:292–306

    Article  Google Scholar 

  • Kauffman EG, Harries PJ (1996) The importance of crisis progenitors in recovery from mass extinction. In: Hart MB (ed) Biotic recovery from mass extinction events. Geological Society, London, Special Publications 102, pp 15–39

    Google Scholar 

  • Kemp DB, Coe AL, Cohen AS, Schwark L (2005) Astronomical pacing of methane release in the Early Jurassic period. Nature 437:396–400

    Article  Google Scholar 

  • Korte C, Hesselbo SP (2011) Shallow marine carbon and oxygen isotope and elemental records indicate icehouse-greenhouse cycles during the Early Jurassic. Paleoceanography 26:PA4219

    Google Scholar 

  • Krencker FN, Bodin S, Suan G, Heimhofer U, Kabiri L, Immenhauser A (2015) Toarcian extreme warmth led to tropical cyclone intensification. Earth Planet Sci Lett 425:120–130

    Article  Google Scholar 

  • Łaska W, Rodríguez-Tovar FJ, Uchman A (2017) Evaluating macrobenthic response to the Cretaceous-Palaeogene event: a high-resolution ichnological approach at the Agost section (SE Spain). Cretac Res 70:96–110

    Article  Google Scholar 

  • Latimer JC, Filippelli GM (2001) Terrigenous input and paleoproductivity in the Southern Ocean. Paleoceanography 16:627–643

    Article  Google Scholar 

  • Littler K, Hesselbo SP, Jenkyns HC (2010) A carbon-isotope perturbation at the Pliensbachian-Toarcian boundary: evidence from the Lias Group, NE England. Geol Mag 147:181–192

    Article  Google Scholar 

  • Mailliot S, Mattioli E, Guex J, Pittet B (2006) The Early Toarcian anoxia, a synchronous event in the Western Tethys? An approach by quantitative biochronology (Unitary Associations), applied on calcareous nannofossils. Palaeogeogr Palaeoclimatol Palaeoecol 240:562–586

    Article  Google Scholar 

  • Mailliot S, Mattioli E, Bartolini A, Baudin F, Pittet B, Guex J (2009) Pliensbachian-Toarcian (Early Jurassic) environmental changes in an epicontinental basin of NW Europe (Causses area, central France): the evidence from an integrated study of microfossils and geochemistry. Palaeogeogr Palaeoclimatol Palaeoecol 273:346–364

    Article  Google Scholar 

  • Marok A, Reolid M (2012) Lower Jurassic sediments from the Rhar Roubane Mountains (Western Algeria): stratigraphic precisions and synsedimentary block-faulting. J Afr Earth Sc 76:50–65

    Article  Google Scholar 

  • Martínez RM, Lago M, Valenzuela JI, Vaquer R, Salas R (1996a) El magmatismo alcalino jurásico del sector SE de la Cadena Ibérica: Composición y estructura. Geogaceta 20:1687–1690

    Google Scholar 

  • Martínez RM, Lago M, Vaquer R, Valenzuela JI, Arranz E (1996b) Composición mineral del volcanismo jurásico (pre-Bajociense medio) en la Sierra de Javalambre (Cordillera Ibérica, Teruel): Datos preliminares. Geogaceta 19:41–44

    Google Scholar 

  • Martínez RM, Lago M, Valenzuela JI, Vaquer R, Salas R, Dumitrescu R (1997) El volcanismo Triásico y Jurásico del sector SE de la Cadena Ibérica y su relación con los estadios de rift mesozoicos. Bol Geol Min 108-4 y 5(367–376):39–48

    Google Scholar 

  • Martínez-Ruiz F, Kastner M, Paytan A, Ortega-Huertas M, Bernasconi SM (2000) Geochemical evidence for enhanced productivity during S1 sapropel deposition in the eastern Mediterranean. Paleoceanography 15:200–209

    Article  Google Scholar 

  • Martínez-Ruiz F, Paytan A, Kastner M, González-Donoso JM, Linares D, Bernasconi SM, Jiménez-Espejo FJ (2003) A comparative study of the geochemical and mineralogical characteristics of the S1 sapropel in the western and eastern Mediterranean. Palaeogeogr Palaeoclimatol Palaeoecol 190:23–37

    Article  Google Scholar 

  • Mattioli E, Erba E (1999) Synthesis of calcareous nannofossil events in tethyan Lower and Middle Jurassic successions. Riv Ital Paleontol Stratigr 105:343–376

    Google Scholar 

  • Mattioli E, Pittet B (2002) Contribution of calcareous nannoplankton to carbonate deposition: a new approach applied to the Lower Jurassic of central Italy. Mar Micropaleontol 45:175–190

    Article  Google Scholar 

  • Mattioli E, Pittet B (2004) Spatial and temporal distribution of calcareous nannofossils along a proximal-distal transect in the Lower Jurassic of the Umbria-Marche Basin (central Italy). Palaeogeogr Palaeoclimatol Palaeoecol 205:295–316

    Article  Google Scholar 

  • Mattioli E, Pittet B, Bucefalo-Palliani R, Röhl HJ, Schmid-Röhl A, Morettini E (2004) Phytoplankton evidence for the timing and correlation of palaeoceanographical changes during the early Toarcian oceanic anoxic event (Early Jurassic). J Geol Soc London 161:685–693

    Article  Google Scholar 

  • Mattioli E, Pittet B, Suan G, Mailliot S (2008) Calcareous nannoplankton across the Early Toarcian anoxic event: implications for paleoceanography within the western Tethys. Paleoceanography 23:PA3208

    Google Scholar 

  • Mattioli E, Pittet B, Petitpierre L, Mailliot S (2009) Dramatic decrease of the pelagic carbonate production by nannoplankton across the Early Toarcian Anoxic Event (T-OAE). Glob Planet Changes 65:134–145

    Article  Google Scholar 

  • McArthur JM, Donovan DT, Thirlwall MF, Fouke BW, Mattey D (2000) Strontium isotope profile of the Early Toarcian (Jurassic) oceanic anoxic event, the duration of ammonite biozones, and belemnite palaeotemperatures. Earth Planet Sci Lett 179:269–285

    Article  Google Scholar 

  • McArthur JM, Algeo TJ, van de Schootbrugge B, Li Q, Howarth RJ (2008) Basinal restriction, black shales, Re-Os dating, and Early Toarcian (Jurassic) oceanic anoxic event. Paleoceanography 23:Pa4217

    Google Scholar 

  • McBride EF, Picard DM (1991) Facies implications of Trichichnus and Chondrites in turbidites and hemipelagites, Marnoso-arenacea formation (Miocene), Northern Apennines, Italy. Palaios 6:281–290

    Article  Google Scholar 

  • McElwain JC, Wade-Murphy J, Hesselbo SP (2005) Changes in carbon dioxide during an anoxic event linked to intrusion of Gondwana coals. Nature 435:479–482

    Article  Google Scholar 

  • Meyers SR, Sageman BB, Lyons TW (2005) Organic carbon burial rate and the molybdenum proxy: theoretical framework and application to Cenomanian–Turonian oceanic event 2. Paleoceanography 20:PA2002

    Google Scholar 

  • Miguez-Salas O, Rodríguez-Tovar FJ, Duarte LV (2017) Selective incidence of the Toarcian Oceanic Anoxic Event (T-OAE) on macroinvertebrate marine communities: a case from the Lusitanian basin (Portugal). Lethaia. doi:10.1111/let.12212

    Google Scholar 

  • Mira F (1987) Foraminíferos del Lías margoso de las Cordilleras Béticas. Zona Subbética. Ph.D. Thesis, Universidad de Granada (unpublished)

    Google Scholar 

  • Molina JM, Nieto LM, Ruiz-Ortiz PA, Vera JA (2007) The Zegrí Formation: a record of Lower Jurassic syn-rift sedimentation in the Betic Cordillera. In: 25th IAS Meeting of Sedimentology, Patras (Grecia). Book of Abstracts, p 278

    Google Scholar 

  • Morard A, Guex J, Bartolini A, Morettini E, De Wewer P (2003) A new scenario for the Domerian-Toarcian transition. Bull Soc Géol Fr 174:351–376

    Article  Google Scholar 

  • Morten SD, Twitchett RJ (2009) Fluctuations in the body size of marine invertebrates through the Pliensbachian-Toarcian extinction event. Palaeogeogr Palaeoclimatol Palaeoecol 284:29–38

    Article  Google Scholar 

  • Mouterde R, Busnardo R, Linares A (1971) Le Domérien dans le Subbetique Central (Andalusie). Données préliminaires. Cuad Geol Ibérica 2:237–254

    Google Scholar 

  • Nagao S, Nakashima S (1992) Possible complexation of uranium with dissolved humic substances in pore water of marine-sediments. Sci Total Environ 118:439–447

    Article  Google Scholar 

  • Nieto LM (1997) La Cuenca subbética mesozoica en el sector oriental de las Cordilleras Béticas. Ph.D. Thesis, Universidad de Granada

    Google Scholar 

  • Nieto LM, Molina JM, Ruiz-Ortiz PA (2004) La Formación Zegrí: registro de los primeros estadios de una etapa sin-rift en el Jurásico de las Zonas Externas Béticas. Geotemas 6:157–160

    Google Scholar 

  • Nikitenko BL, Reolid M, Glinskikh L (2013) Ecostratigraphy of benthic foraminifera for interpreting Arctic record of Early Toarcian biotic crisis (Northern Siberia, Russia). Palaeogeogr Palaeoclimatol Palaeoecol 376:200–212

    Article  Google Scholar 

  • Palomo I (1987) Mineralogía y geoquímica de sedimentos pelágicos del Jurásico inferior de las Cordilleras Béticas (SE de España). Ph.D. Thesis, Universidad de Granada

    Google Scholar 

  • Palomo I, Ortega-Huertas M, Fenoll P (1985) The significance of clay minerals in studies of the evolution of the Jurassic deposits of the Betic Cordilleras, SE Spain. Clay Miner 20:39–52

    Article  Google Scholar 

  • Parisi G, Ortega-Huertas M, Nocchi M, Palomo I, Monaco P, Ruiz F (1996) Stratigraphy and geochemical anomalies of the Early Toarcian oxygen-poor interval in the Umbria-Marche Apennines (Italy). Geobios 29:469–484

    Article  Google Scholar 

  • Pingkang W, Yongjian H, Chengshan W, Zihui F, Qunghua H (2012) Pyrite morphology in the first member of the Late cretaceous Qingshankou Formation, Songliao Basin, northeast China. Palaeogeogr Palaeoclimatol Palaeoecol 385:125–136

    Google Scholar 

  • Pittet B, Suan G, Lenoir F, Duarte LV, Mattioli E (2014) Carbon isotope evidence for sedimentary discontinuities in the lower Toarcian of the Lusitanian Basin (Portugal): sea-level change at the onset of the Oceanic Anoxic Event. Sed Geol 303:1–14

    Article  Google Scholar 

  • Portugal M, Morata DA, Puga E, Demant A, Aguirre L (1995) Evolución geoquímica y temporal del magmatismo básico mesozoico en las Zonas Externas de las Cordilleras Béticas. Estud Geol 51:109–118

    Google Scholar 

  • Powell WG, Johston PA, Collom CJ (2003) Geochemical evidence for oxygenated bottom waters during deposition of fossiliferous strata of the Burgess Shale Formation. Palaeogeogr Palaeoclimatol Palaeoecol 201:249–268

    Article  Google Scholar 

  • Pye K (1987) Aeolian dust and dust deposits. Academic Press, San Diego

    Google Scholar 

  • Reolid M (2008) Taphonomic features of Lenticulina as a tool for palaeoenvironmental interpretation of mid-shelf deposits of Upper Jurassic (Prebetic Zone, southern Spain). Palaios 23:482–494

    Article  Google Scholar 

  • Reolid M (2014a) Stable isotopes on foraminifera and ostracods for interpreting incidence of the Toarcian Oceanic Anoxic Event in Westernmost Tethys: role of water stagnation and productivity. Palaeogeogr Palaeoclimatol Palaeoecol 395:77–91

    Article  Google Scholar 

  • Reolid M (2014b) Pyritized radiolarians and siliceous sponges from oxygen restricted deposits (Lower Toarcian, Jurassic). Facies 60:789–799

    Article  Google Scholar 

  • Reolid M, Abad I (2014) Glauconitic laminated crusts as a consequence of hydrothermal alteration of Jurassic pillow-lavas from Median Subbetic (Betic Cordillera, S Spain): a microbial influence case. J Iberian Geol 40:389–408

    Google Scholar 

  • Reolid M, Martínez-Ruiz F (2012) Comparison of benthic foraminifera and geochemical proxies in shelf deposits from the Upper Jurassic of the Prebetic (southern Spain). J Iberian Geol 38:449–465

    Google Scholar 

  • Reolid M, Rodríguez-Tovar FJ, Nagy J, Olóriz F (2008) Benthic foraminiferal morphogroups of mid to outer shelf environments of the Late Jurassic (Prebetic Zone, southern Spain): characterisation of biofacies and environmental significance. Palaeogeogr Palaeoclimatol Palaeoecol 261:280–299

    Article  Google Scholar 

  • Reolid M, Rodríguez-Tovar FJ, Marok A, Sebane A (2012a) The Toarcian Oceanic Anoxic Event in the Western Saharan Atlas, Algeria (North African paleomargin): role of anoxia and productivity. Geol Soc Am Bull 124:1646–1664

    Article  Google Scholar 

  • Reolid M, Sebane A, Rodríguez-Tovar FJ, Marok A (2012b) Foraminiferal morphogroups as a tool to approach the Toarcian Anoxic Event in the Western Saharan Atlas (Algeria). Palaeogeogr Palaeoclimatol Palaeoecol 323–325:87–99

    Article  Google Scholar 

  • Reolid M, Chakiri S, Bejjaji Z (2013a) Adaptative strategies of the Toarcian benthic foraminiferal assemblages from the Middle Atlas (Morocco): palaeoecological implications. J Afr Earth Sc 84:1–12

    Article  Google Scholar 

  • Reolid M, Nieto LM, Sánchez-Almazo IM (2013b) Caracterización geoquímica de facies pobremente oxigenadas en el Toarciense inferior (Jurásico inferior) del Subbético Externo. Rev Soc Geol Esp 26:69–84

    Google Scholar 

  • Reolid M, Marok A, Sebane A (2014a) Foraminiferal assemblages and geochemistry for interpreting the incidence of Early Toarcian environmental changes in North Gondwana palaeomargin (Traras Mountains, Algeria). J Afr Earth Sc 95:105–122

    Article  Google Scholar 

  • Reolid M, Mattioli E, Nieto LM, Rodríguez-Tovar FJ (2014b) The Early Toarcian Ocanic Anoxic Event in the External Subbetic (Southiberian Palaeomargin, Westernmost Tethys): geochemistry, nannofossils and ichnology. Palaeogeogr Palaeoclimatol Palaeoecol 411:79–94

    Article  Google Scholar 

  • Reolid M, Sánchez-Quiñónez CA, Alegret L, Molina E (2015a) Palaeoenvironmental turnover across the Cenomanian-Turonian transition in Oued Bahloul, Tunisia: foraminifera and geochemical proxies. Palaeogeogr Palaeoclimatol Palaeoecol 417:491–510

    Article  Google Scholar 

  • Reolid M, Rivas P, Rodríguez-Tovar FJ (2015b) Toarcian ammonitico rosso facies from the South Iberian Paleomargin (Betic Cordillera, southern Spain): paleoenvironmental reconstruction. Facies 61:22. doi:10.1007/s10347-015-0447-3

    Article  Google Scholar 

  • Rey J, Delgado A (2002) Carbon and oxygen isotopes: a tool for Jurassic and early Cretaceous pelagic correlation (southern Spain). Geol J 37:337–345

    Article  Google Scholar 

  • Rey J, Bonnet L, Cubaynes R, Qajoun A, Ruget C (1994) Sequence stratigraphy and biological signals: statistical studies of benthic foraminifera from Liassic series. Palaeogeogr Palaeoclimatol Palaeoecol 111:149–171

    Article  Google Scholar 

  • Rickard D, Mussmann M, Steadman JA (2017) Sedimentary sulfides. Elements 13:117–122

    Article  Google Scholar 

  • Rita P, Reolid M, Duarte LV (2016) Benthic foraminiferal assemblages record major environmental perturbations during the Late Pliensbachian—Early Toarcian interval in the Peniche GSSP, Portugal. Palaeogeogr Palaeoclimatol Palaeoecol 454:267–281

    Article  Google Scholar 

  • Robertson AK, Filippelli GM (2008) Paleoproductivity variations in the eastern equatorial Pacific over glacial timescales. American Geophysical Union Fall Meeting 2008, Abstract PP33C-1576

    Google Scholar 

  • Rodríguez-Tovar FJ, Reolid M (2013) Environmental conditions during the Toarcian Oceanic Anoxic Event (T-OAE) in the westernmost Tethys: influence of the regional context on a global phenomenon. Bull Geosci 88:697–712

    Article  Google Scholar 

  • Rodríguez-Tovar FJ, Uchman A (2010) Ichnofabric evidence for the lack of bottom anoxia during the Lower Toarcian Oceanic Anoxic Event (T-OAE) in the Fuente de la Vidriera section, Betic Cordillera, Spain. Palaios 25:576–587

    Article  Google Scholar 

  • Rodríguez-Tovar FJ, Miguez-Salas O, Duarte LV (2017) Toarcian Oceanic Anoxic Event induced unusual behaviour and palaeobiological changes in Thalassinoides tracemakers. Palaeogeogr Palaeoclimatol Palaeoecol (in press)

    Google Scholar 

  • Röhl HJ, Schmid-Röhl A, Oschmann W, Frimmel A, Scwark L (2001) The Posidonian Shale (Lower Toarcian) of SW-Germany: an oxygen-depleted ecosystem controlled by sea level and paleoclimate. Palaeogeogr Palaeoclimatol Palaeoecol 165:27–52

    Article  Google Scholar 

  • Rosales I, Quesada S, Robles S (2004) Paleotemperature variations of Early Jurassic seawater recorded in geochemical trends of belemnites from the Basque-Cantabrian basin, northern Spain. Palaeogeogr Palaeoclimatol Palaeoecol 203:253–275

    Article  Google Scholar 

  • Ruban DA, Tyszka J (2005) Diversity dynamics and mass extinctions of the Early-Middle Jurassic foraminifers: a record from the Northwestern Caucasus. Palaeogeogr Palaeoclimatol Palaeoecol 222:329–343

    Article  Google Scholar 

  • Ruget C, Martínez-Gallego J (1979) Foraminifères du Lias moyen et supérieur. Cuad Geol Univ Granada 10:311–316

    Google Scholar 

  • Sabatino N, Neri R, Bellanca A, Jenkyns HC, Baudin F, Parisi G, Masetti D (2009) Carbon-isotope records of the Early Jurassic (Toarcian) oceanic anoxic event from the Valdorbia (Umbria-Marche Apennines) and Monte Mangart (Julian Alps) sections: palaeoceanographic and stratigraphic implications. Sedimentology 56:1307–1328

    Article  Google Scholar 

  • Sælen G, Tyson RV, Telnæs N, Talbot MR (2000) Contrasting watermass conditions during deposition of the Whitby Mudstone (Lower Jurassic) and Kimmeridge Clay (Upper Jurassic) formations, UK. Palaeogeogr Palaeoclimatol Palaeoecol 163:163–196

    Article  Google Scholar 

  • Sandoval J, Bill M, Aguado R, O’Dogherty L, Rivas P, Morard A, Guex J (2012) The Toarcian in the Subbetic basin (southern Spain): bio-events (ammonite and calcareous nannofossils) and carbon-isotope stratigraphy. Palaeogeogr Palaeoclimatol Palaeoecol 342–343:40–63

    Article  Google Scholar 

  • Savrda CE, Bottjer DJ (1986) Trace-fossil model for reconstruction of paleo-oxygenation in bottom waters. Geology 14:3–6

    Article  Google Scholar 

  • Sebane A, Marok A, Elmi S (2007) Évolution des peuplements de foraminifères pendant la crise toarcienne à l’exemple des données des Monts des Ksour (Atlas Saharien Occidental, Algérie). C R Palevol 6:189–196

    Article  Google Scholar 

  • Seilacher A, Hauff RB (2004) Constructional morphology of pelagic crinoids. Palaios 19:3–16

    Article  Google Scholar 

  • Seilacher A, MacClintock C (2005) Crinoid anchoring strategies for soft-bottom dwelling. Palaios 20:224–240

    Article  Google Scholar 

  • Siebert C, Nagler TF, von Blanckenburg F, Kramers JD (2003) Molybdenum isotope records as a potential new proxy for paleoceanography. Earth Planet Sci Lett 211:159–171

    Article  Google Scholar 

  • Simms MJ (1986) Contrasting lifestyles in Lower Jurassic crinoids: a comparison of benthic and pseudopelagic Isocrinida. Palaeontology 29:475–493

    Google Scholar 

  • Sohn IG (1960) Paleozoic species of Bairdia and related genera –revision of some Paleozoic ostracod genera. US Geol Surv Prof Pap 330-B:107–160

    Google Scholar 

  • Suan G, Pittet B, Bour I, Mattioli E, Duarte LV, Mailliot S (2008) Duration of the Early Toarcian carbon isotope excursion deduced from spectral analysis: consequence for its possible causes. Earth Planet Sci Lett 267:666–679

    Article  Google Scholar 

  • Suan G, Mattioli E, Pittet B, Lécuyer C, Suchéras-Marx B, Duarte LV, Philippe M, Reggiani L, Martineau F (2010) Secular environmental precursors to Early Toarcian (Jurassic) extreme climate changes. Earth Planet Sci Lett 290:448–458

    Article  Google Scholar 

  • Suan G, Nikitenko BL, Rogov MA, Baudin F, Spangenberg JE, Knyazev VG, Glinskikh LA, Goryacheva AA, Adatte T, Riding JB, Föllmi KB, Pittet B, Mattioli E, Lécuyer C (2011) Polar record of Early Jurassic massive carbon injection. Earth Planet Sci Lett 312:102–113

    Article  Google Scholar 

  • Suan G, Rulleau L, Mattioli E, Sucheras-Marx B, Rousselle B, Pittet B, Vincent P, Martin JE, Lena A, Spangenberg JE, Föllmi KB (2013) Palaeoenvironmental significance of Toarcian black shales and event deposits from southern Beaujolais, France. Geol Mag 150:728–742

    Article  Google Scholar 

  • Sun YB, Wu F, Clemens SC, Oppo DW (2008) Processes controlling the geochemical composition of the South China Sea sediments during the last climatic cycle. Chem Geol 257:234–249

    Article  Google Scholar 

  • Svensen H, Planke S, Chevallier L, Malthe-Sorenssen A, Corfu F, Jamtveit B (2007) Hydrothermal venting of greenhouse gases triggering Early Jurassic global warming. Earth Planet Sci Lett 256:554–566

    Article  Google Scholar 

  • Sweeney RE, Kaplan LR (1980) Stable isotope composition of disolved sulfate and hydrogen sulfide in the Black Sea. Mar Chem 9:145–152

    Article  Google Scholar 

  • Teichert S, Nutzel A (2014) Early Jurassic anoxia triggered the evolution of the oldest holoplanktonic gastropod Coelodiscus minutus by means of heterochrony. Acta Palaeontol Pol 60:269–276

    Google Scholar 

  • Thomson J, Mercone D, de Lange GJ, Van Santvoort PJM (1999) Review of recent advances in the interpretation of eastern Mediterranean sapropel S1 from geochemical evidence. Mar Geol 153:77–89

    Article  Google Scholar 

  • Tremolada F, van de Schootbrugge B, Erba E (2005) Early Jurassic schizosphaerellid crisis in Cantabria, Spain: implications for calcification rates and phytoplankton evolution across the Toarcian oceanic anoxic event. Paleoceanography 20:PA2011

    Google Scholar 

  • Tribovillard N, Algeo T, Lyons T, Riboulleau A (2006) Trace metals as palaeoredox and palaeoproductivity proxies: an update. Chem Geol 232:12–32

    Article  Google Scholar 

  • Twitchett RJ (2007) The Lilliput effect in the aftermath of the end-Permian extinction event. Palaeogeogr Palaeoclimatol Palaeoecol 252:132–144

    Article  Google Scholar 

  • Tyson RV, Pearson TH (1991) Modern and ancient continental shelf anoxia: an overview. In: Tyson RV, Pearson TH (eds) Modern and ancient continental shelf anoxia. Geological Society Special Publication 58, pp 1–24

    Google Scholar 

  • Tyszka J (1994) Response of Middle Jurassic benthic foraminiferal morphogroups to dysoxic/anoxic conditions in the Pieniny Klippen Basin, Polish Carpathians. Palaeogeogr Palaeoclimatol Palaeoecol 110:55–81

    Article  Google Scholar 

  • Tyszka J, Jach R, Bubík M (2010) A new vent–related foraminifer from the lower Toarcian black claystone of the Tatra Mountains, Poland. Acta Palaeontol Pol 55:333–342

    Article  Google Scholar 

  • Urbanek A (1993) Biotic crisis in the history of upper Silurian graptoloids: a palaeobiological model. Hist Biol 7:29–50

    Article  Google Scholar 

  • van de Schootbrugge B, Bailey TR, Rosenthal Y, Katz ME, Wright JD, Miller KG, Feist-Burkhardt S, Falkowski PG (2005a) Early Jurassic climate change and the radiation of organic walled phytoplankton in the Tethys Ocean. Paleobiology 31:73–97

    Article  Google Scholar 

  • van de Schootbrugge B, McArthur JM, Bailley TR, Rosenthal Y, Wright JD, Miller KG (2005b) Toarcian oceanic anoxic event: an assessment of global causes using belemnite C isotope records. Paleoceanography 20:3008. doi:10.1029/2004PA001102

    Google Scholar 

  • van de Schootbrugge B, Bachan A, Suan G, Richoz S, Payne JL (2013) Microbes, mud and methane: cause and consequence of recurrent Early Jurassic anoxia following the End-Triassic mass extinction. Palaeontology 56:685–709

    Article  Google Scholar 

  • Vera JA (2001) Evolution of the Iberian continental margin. Mém Mus Natl d’Hist Nat Paris 186:109–143

    Google Scholar 

  • Vera JA, Molina JM, Montero P, Bea F (1997) Jurassic guyots on the Southern Iberian Continental Margin: a model of isolated carbonate platforms on volcanic submarine edifices. Terra Nova 9:163–166

    Article  Google Scholar 

  • Vörös A (2005) The smooth brachiopods of the Mediterranean Jurassic: refugees or invaders? Palaeogeogr Palaeoclimatol Palaeoecol 223:222–242

    Article  Google Scholar 

  • Wang P, Huang Y, Wang C, Feng Z, Huang Q (2012) Pyrite morphology in the first member of the Late Cretaceous Qingshankou Formation, Songliao Basin, northeast China. Palaeogeogr Palaeoclimatol Palaeoecol 385:125–136

    Article  Google Scholar 

  • Wei H, Algeo TJ, Yu H, Wang J, Guo C, Shi G (2015) Episodic euxinia in the Changhsingian (late Permian) of South China: evidence from framboidal pyrite and geochemical data. Sed Geol 319:78–97

    Article  Google Scholar 

  • Wendler I, Huber BT, MacLeod KG, Wendler JE (2013) Stable oxygen and carbon isotope systematics of exquisitely preserved Turonian foraminifera from Tanzania—understanding isotopic signatures in fossils. Mar Micropaleontol 102:1–33

    Article  Google Scholar 

  • Wetzel A (1994) The environmental significance of ‘‘opportunistic’’ and ‘‘equilibrium’’ strategies of the Chondrites and Phycosiphon producers. In: 14th International Sedimentological Congress, Recife, Brazil, pp 17–18

    Google Scholar 

  • Wignall PB, Myers KJ (1988) Interpreting the benthic oxygen levels in mudrocks: a new approach. Geology 16:452–455

    Article  Google Scholar 

  • Wignall PB, Newton RJ, Little CTS (2005) The timing of paleoenvironmental change and cause-and-effect relationships during the Early Jurassic mass extinction in Europe. Am J Sci 305:1014–1032

    Article  Google Scholar 

  • Wilkin RT, Barnes HL, Brantley SL (1996) The size distribution of framboidal pyrite in modern sediments: an indicator of redox conditions. Geochim Cosmochim Acta 60:3897–3912

    Article  Google Scholar 

  • Yilmaz IO, Altiner D, Tekin UK, Tuysuz O, Ocakoglu F, Acikalin S (2010) Cenomanian-Turonian Oceanic Anoxic Event (OAE2) in the Sakarya zone, northwestern Turkey: sedimentological, cyclostratigraphic, and geochemical records. Cretac Res 31:207–226

    Article  Google Scholar 

  • Ziveri P, Stoll H, Probert I, Klaas C, Geisen M, Ganssen G, Young J (2012) Stable isotope “vital effects” in coccolith calcite. Earth Planet Sci Lett 210:137–149

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matías Reolid .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Cite this chapter

Reolid, M., Molina, J.M., Nieto, L.M., Rodríguez-Tovar, F.J. (2018). External Subbetic Outcrops. In: The Toarcian Oceanic Anoxic Event in the South Iberian Palaeomargin . SpringerBriefs in Earth Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-67211-3_3

Download citation

Publish with us

Policies and ethics