Laminar Boundary Layer Flow with DBD Plasma Actuation: A Similarity Equation

  • Gael de Oliveira
  • Marios Kotsonis
  • Bas van Oudheusden
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 120)


The framework of self-similar laminar boundary layer flow solutions is extended to include the effect of actuation with body force fields resembling those generated by DBD plasma actuators. The deduction line is similar to previous work investigating the effect of porous wall suction on laminar boundary layers. The starting point of the analysis is a generalised form of the Boundary Layer Partial Differential Equations (BL-PDEs) that includes volume force terms. Actuation force distributions are defined such that the volume force term of the BL-PDE equations conforms to the requirements of similarity. New similarity parameters for the plasma strength and thickness are identified. The procedure yields a general similarity equation which includes the effect of pressure gradients, wall transpiration and DBD plasma actuation. Select numerical solutions of the new similarity equation are presented to develop instinctive understanding and prompt a discussion on the construction of new closure relations for integral boundary layer models.


  1. 1.
    Prandtl, L: Motion of fluids with very little viscosity. NACA Technical Memorandum 452 (1928)Google Scholar
  2. 2.
    Meier, G.E.A., Sreenivasan, K.R., Heinemann, H.J. (eds.): IUTAM Symposium on One Hundred Years of Boundary Layer Research. Springer, Dordrecht (2006)zbMATHGoogle Scholar
  3. 3.
    Saint-Venant, A.B.: Mémoire sur la théorie de la résistance des fluides. C. R. Hebd. Seances Acad. Sci. 24 243–246 (1847)Google Scholar
  4. 4.
    Eckert, M.: The Dawn of Fluid Dynamics. Wiley, Weinheim (2006)Google Scholar
  5. 5.
    Gad-el-Hak, M., Pollard, A., Bonnet, J.P. (ed.): Flow Control Fundamentals and Practices. Springer, Berlin (1998)zbMATHGoogle Scholar
  6. 6.
    Griffith, A., Meredith, F.W.: Possible improvement in aircraft performance due to use of boundary layer suction. British ARC R&M 2315 (1935)Google Scholar
  7. 7.
    Richards, E.J., Walker, W.S., Taylor, C.R.: Wind-tunnel tests on a 30 per cent. suction wing. British ARC R&M 2149 (1945)Google Scholar
  8. 8.
    Sage, A., Sargent, R.F.: Design of suction slots. British ARC R&M 2127 (1944)Google Scholar
  9. 9.
    Kay, J.M.: Boundary layer flow along a flat plate with uniform suction. ARC R&M 2628 (1948)Google Scholar
  10. 10.
    Thwaites, B.: An exact solution of the boundary-layer equations under particular conditions of porous surface suction. British ARC R&M 2241 (1946)Google Scholar
  11. 11.
    Watson, E.J.: Asymptotic solution of a boundary layer suction problem. British ARC R&M 2298 (1950)Google Scholar
  12. 12.
    Watson, E.J.: The asymptotic theory of boundary layer flow with suction. British ARC R&M 2619 (1952)Google Scholar
  13. 13.
    Blasius, H.: The boundary layers in fluids with little friction. NACA Technical Memorandum 1256 (1950)Google Scholar
  14. 14.
    Falkner V.M., Skan S.W.: Solutions of the boundary layer equations. Philos. Mag. 12(80), 865–896 (1931)CrossRefzbMATHGoogle Scholar
  15. 15.
    Tennekes, H.: Similarity laws for turbulent boundary layers with suction or injection. J. Fluid Mech. 21(4), 689–703 (1965)CrossRefGoogle Scholar
  16. 16.
    van Ingen, J., Kotsonis, M.: A two-parameter method for eˆN transition prediction. AIAA 2011-3928 (2011)Google Scholar
  17. 17.
    Greenblatt, D., Paschal, K.B., Yao, C.S., Harris, J., Schaeffler, N.W., Washburn, E.: Experimental investigation of separation control part 1: baseline and steady suction. AIAA J. 44(12), 2820–2830 (2006)CrossRefGoogle Scholar
  18. 18.
    Chen, C., Seele, R., Wygnanski, I.: Flow control on a thick airfoil using suction compared to blowing. AIAA J. 51(6), 1462–1472 (2013)CrossRefGoogle Scholar
  19. 19.
    Boermans, L.M.M.: Practical implementations of boundary layer suction for drag reduction and lift enhancement at low speed. Presentation at KATnet II Workshop, Ascot UK (2008)Google Scholar
  20. 20.
    Blackner, A.M.: Jet engine and method for reducing jet engine noise by reducing nacelle boundary layer thickness. U.S. Patent 6,094,907, 5 Jun 1996Google Scholar
  21. 21.
    Actiflow BV: Ferrari 599x with Active BLS. (2009). Accessed 20 Oct 2016
  22. 22.
    Grife, R., Darabai, A., Wygnanski, I.: Download reduction on a three dimensional V-22 model using active flow control. AIAA 2002-3071 (2002)Google Scholar
  23. 23.
    Moreau, E.: Airflow control by non-thermal plasma actuators. J. Phys. D. Appl. Phys. 40(3), 605–636 (2007)CrossRefGoogle Scholar
  24. 24.
    van Rooij, R.P.J.O.M, Timmer, W.A.: Roughness sensitivity considerations for thick rotor blade airfoils. Trans. ASME 125, 468–478 (2003)Google Scholar
  25. 25.
    Smith, F.T.: Theorethical prediction and design for vortex generators in turbulent boundary layers. J. Fluid Mech. 270, 91–131 (1994)CrossRefzbMATHGoogle Scholar
  26. 26.
    Seifert, A., Bachar, D., Koss, D., Shepshelovich, M., Wygnanski, I.: Oscillatory blowing: a tool to delay boundary-layer separation. AIAA J. 31(11), 2052–2060 (1993)CrossRefGoogle Scholar
  27. 27.
    Corke, C.T., Lon Enloe, C., Wilkinson, S.P.: Dielectric barrier discharge plasma actuators for flow control. Ann. Rev. Fluid Mech. 42, 505–529 (2010)CrossRefGoogle Scholar
  28. 28.
    Kotsonis, M.: Diagnostics for characterisation of plasma actuators. Meas. Sci. Technol. 26, 092001 (2015)CrossRefGoogle Scholar
  29. 29.
    Benard, N., Moreau, E.: Electrical and mechanical characteristics of surface AC dielectric barrier discharge plasma actuators applied to airflow control. Exp. Fluids 55 1846 (2014)CrossRefGoogle Scholar
  30. 30.
    Orlov, D.M.: Modelling and simulation of single dielectric barrier discharge plasma actuators. Dissertation, University of Notre-Dame (2006)Google Scholar
  31. 31.
    Grundmann, S., Tropea, C.: Experimental transition delay using glow-discharge plasma actuators. Exp. Fluids 42, 653–657 (2007)CrossRefGoogle Scholar
  32. 32.
    Grundmann, S., Tropea, C.: Active cancellation of artificially introduced Tollmien-Schlichting waves using plasma actuators. Exp. Fluids 44, 795–806 (2008)CrossRefGoogle Scholar
  33. 33.
    Pereira, R., Timmer, W.A., de Oliveira, G., van Bussel, G.J.W.: Design of HAWT airfoils tailored for active flow control. Wind Energy 20, 1569–1583 (2017)CrossRefGoogle Scholar
  34. 34.
    Oliveira G., Pereira, R., Ragni, D., Kotsonis, M.: Modeling DBD plasma actuators in integral boundary layer formulation for application in panel methods. AIAA 2015-3367 (2015)Google Scholar
  35. 35.
    Asghar, A., Jumper, E., Corke, C.T.: On the use of Reynolds number as the scaling parameter for the performance of plasma actuator in a weakly compressible flow. AIAA 2006-0170 (2006)Google Scholar
  36. 36.
    Acheson, D.J.: Elementary Fluid Dynamics. Clarendon Press, Oxford (1990)zbMATHGoogle Scholar
  37. 37.
    Batchelor, G.K.: An Introduction to Fluid Dynamics, 3rd edn. Cambridge University Press, Cambridge (2000)CrossRefzbMATHGoogle Scholar
  38. 38.
    Pereira, R., Ragni, D., Kotsonis, M.: Effect of external flow velocity on momentum transfer of dielectric barrier discharge plasma actuators. J. Appl. Phys. 116(10), 103301 (2014)CrossRefGoogle Scholar
  39. 39.
    Pereira, R., Kotsonis, M., de Oliveira, G., Ragni, D.: Analysis of local frequency response of flow to actuation: application to the dielectric barrier discharge plasma actuator. J. Appl. Phys. 118(15), 153301 (2015)CrossRefGoogle Scholar
  40. 40.
    White, F.M.: Viscous Fluid Flow, 2nd edn. McGraw-Hill, New York (1991)Google Scholar
  41. 41.
    Kundu, P.K., Cohen, I.M, Dowling D.R.: Fluid Mechanics, 6th edn. Elsevier, Burlington (2015)Google Scholar
  42. 42.
    Schlichting, H., Gersten, K.: Boundary Layer Theory, 8th edn. Springer, Berlin (2003)zbMATHGoogle Scholar
  43. 43.
    Oleinik, O.A., Samokhin, V.N.: Mathematical Models in Boundary Layer Theory. Chapman & Hall/CRC Press, Boca Raton (1999)zbMATHGoogle Scholar
  44. 44.
    van Rooij, R.P.J.O.M.: Modification of the boundary layer calculation in RFOIL for improved airfoil stall prediction. DUWIND Report IW-96087R (1996)Google Scholar
  45. 45.
    Drela, M., Giles, M.B.: Viscous-inviscid analysis of transonic and low Reynolds number airfoils. AIAA J. 25(10), 1347–1355 (1987)CrossRefzbMATHGoogle Scholar
  46. 46.
    Hartree, D.R.: On an equation occurring in Falkner and Skan’s approximate treatment of the equations of the boundary layer. Math. Proc. Camb. Philos. Soc. 33(2), 233–239 (1937)zbMATHGoogle Scholar
  47. 47.
    Brown, S.N.: Hartree’s solutions of the Falkner-Skan equation. AIAA J. 4(12), 2215–2216 (1966)CrossRefzbMATHGoogle Scholar
  48. 48.
    Cebeci, T., Keller, H.B.: Shooting and parallel shooting methods for solving the Falkner-Skan boundary layer equation. J. Comput. Phys. 7, 289–300 (1971)CrossRefzbMATHGoogle Scholar
  49. 49.
    Asaitambi, A.: A finite-difference method for the Falkner-Skan equation. Appl. Math. Comput. 92, 135–141 (1998)CrossRefMathSciNetGoogle Scholar
  50. 50.
    Farell, P.A., Hegarty, A.F., Miller, J.J.H., O’riordan, E., Shishkin, G.I.: Robust Computational Techniques for Boundary Layers. Chapman & Hall/CRC Press, Boca Raton (2000)zbMATHGoogle Scholar
  51. 51.
    Elgazery, N.S.: Numerical solution for the Falkner-Skan equation. Chaos Solitons Fractals 35, 738–746 (2006)CrossRefzbMATHGoogle Scholar
  52. 52.
    Kierzenka, J., Shampine, L.F.: A BVP solver based on residual control and the Matlab PSE. ACM Trans. Math. Softw. 27(3), 299–316 (2001)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Gael de Oliveira
    • 1
  • Marios Kotsonis
    • 1
  • Bas van Oudheusden
    • 1
  1. 1.Faculty of Aerospace Engineering, Department of Aerodynamics, Wind Energy and Propulsion (AWEP)Delft University of TechnologyDelftNetherlands

Personalised recommendations