Skip to main content

Energy-Norm A Posteriori Error Estimates for Singularly Perturbed Reaction-Diffusion Problems on Anisotropic Meshes: Neumann Boundary Conditions

  • Conference paper
  • First Online:
Boundary and Interior Layers, Computational and Asymptotic Methods BAIL 2016

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 120))

  • 493 Accesses

Abstract

Residual-type a posteriori error estimates in the energy norm are given for singularly perturbed semilinear reaction-diffusion equations posed in polygonal domains. Linear finite elements are considered on anisotropic triangulations. The error constants are independent of the diameters and the aspect ratios of mesh elements and of the small perturbation parameter. The case of the Dirichlet boundary conditions was considered in the recent article (Kopteva, Numer. Math., 2017, Published online 2 May 2017. doi:10.1007/s00211-017-0889-3). Now we extend this analysis to also allow boundary conditions of Neumann type.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ainsworth, M., Oden, J.T.: A Posteriori Error Estimation in Finite Element Analysis. Wiley-Interscience, New York (2000)

    Book  MATH  Google Scholar 

  2. Bakhvalov, N.S.: On the optimization of methods for solving boundary value problems with boundary layers. Zh. Vychisl. Mat. Mat. Fis. 9, 841–859 (1969) (in Russian)

    MathSciNet  Google Scholar 

  3. Chadha, N.M., Kopteva, N.: Maximum norm a posteriori error estimate for a 3d singularly perturbed semilinear reaction-diffusion problem. Adv. Comput. Math. 35, 33–55 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  4. Demlow, A., Kopteva, N.: Maximum-norm a posteriori error estimates for singularly perturbed elliptic reaction-diffusion problems. Numer. Math. 133, 707–742 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  5. Kopteva, N.: Maximum norm error analysis of a 2d singularly perturbed semilinear reaction-diffusion problem. Math. Comput. 76, 631–646 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  6. Kopteva, N.: Maximum norm a posteriori error estimate for a 2d singularly perturbed reaction-diffusion problem. SIAM J. Numer. Anal. 46, 1602–1618 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  7. Kopteva, N.: Linear finite elements may be only first-order pointwise accurate on anisotropic triangulations. Math. Comput. 83, 2061–2070 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  8. Kopteva, N.: Maximum-norm a posteriori error estimates for singularly perturbed reaction-diffusion problems on anisotropic meshes. SIAM J. Numer. Anal. 53, 2519–2544 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  9. Kopteva, N.: Energy-norm a posteriori error estimates for singularly perturbed reaction-diffusion problems on anisotropic meshes. Numer. Math. (2017). Published online 2 May 2017. doi:10.1007/s00211-017-0889-3

    Google Scholar 

  10. Kopteva, N.: Fully computable a posteriori error estimator using anisotropic flux equilibration on anisotropic meshes. (2017, submitted for publication). http://www.staff.ul.ie/natalia/pubs.html

  11. Kopteva, N., O’Riordan, E.: Shishkin meshes in the numerical solution of singularly perturbed differential equations. Int. J. Numer. Anal. Model. 7, 393–415 (2010)

    MATH  MathSciNet  Google Scholar 

  12. Kunert, G.: An a posteriori residual error estimator for the finite element method on anisotropic tetrahedral meshes. Numer. Math. 86, 471–490 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  13. Kunert, G.: Robust a posteriori error estimation for a singularly perturbed reaction-diffusion equation on anisotropic tetrahedral meshes. Adv. Comput. Math. 15, 237–259 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kunert, G., Verfürth, R.: Edge residuals dominate a posteriori error estimates for linear finite element methods on anisotropic triangular and tetrahedral meshes. Numer. Math. 86, 283–303 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  15. Nochetto, R.H.: Pointwise a posteriori error estimates for monotone semi-linear equations. Lecture Notes at 2006 CNA Summer School Probabilistic and Analytical Perspectives on Contemporary PDEs (2006). http://www.math.cmu.edu/cna/Summer06/lecturenotes/nochetto/

  16. Roos, H.-G., Stynes, M., Tobiska, T.: Robust Numerical Methods for Singularly Perturbed Differential Equations. Springer, Berlin (2008)

    MATH  Google Scholar 

  17. Siebert, K.G.: An a posteriori error estimator for anisotropic refinement. Numer. Math. 73, 373–398 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  18. Verfürth, R.: Robust a posteriori error estimators for a singularly perturbed reaction-diffusion equation. Numer. Math. 78, 479–493 (1998)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalia Kopteva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Kopteva, N. (2017). Energy-Norm A Posteriori Error Estimates for Singularly Perturbed Reaction-Diffusion Problems on Anisotropic Meshes: Neumann Boundary Conditions. In: Huang, Z., Stynes, M., Zhang, Z. (eds) Boundary and Interior Layers, Computational and Asymptotic Methods BAIL 2016. Lecture Notes in Computational Science and Engineering, vol 120. Springer, Cham. https://doi.org/10.1007/978-3-319-67202-1_11

Download citation

Publish with us

Policies and ethics