Skip to main content

Biotic Mechanisms for Supporting Environmental Stability

  • Chapter
  • First Online:
The Biosphere and Civilization: In the Throes of a Global Crisis

Abstract

Flows of organic and inorganic carbon in the biosphere—The biosphere as “biotechnology market”—The biota’s threshold of sensitivity to environmental perturbation—The mechanism of biotic regulation and ecological succession—Stabilizing selection as a means to prevent collapse of the biota’s genetic memory—Information flows in the biota and—civilization—Human kind’s possibilities in managing the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    These bacteria have the ability to gather energy for organic synthesis from the decomposition of several chemical substances—hydrogen sulfide, ammonia, etc. However, in the overall cycle of matter, they play a relatively minor role.

  2. 2.

    We will say more on the biotic regulation concept’s handling of the biosphere’s carrying capacity in Chap. 14.

  3. 3.

    An evolutionary paradox linked to the functional reconstruction of organs that, at the time of appearance, do not have the adaptive value that they receive in the course of further evolution. For example, the swim bladder in fish reconstituted itself as the lungs of land animals.

References

  • Barnola, J. M., Pimienta, P., Raynaud, D., & Korotkevich, Y. S. (1991). CO2 climate relationship as deduced from Vostok ice core: a re-examination based on new measurements and on re-evolution of the air dating. Tellus, 43B(2), 83–90.

    Article  CAS  Google Scholar 

  • Bormann, F. H., & Likens, G. E. (1979). Pattern and process in a forested ecosystems. New York: Springer.

    Book  Google Scholar 

  • Budyko, M. I., Ronov, A. B., & Yanshin, A. L. (1987). History of the earth’s atmosphere. Berlin: Springer.

    Book  Google Scholar 

  • Chaykovsky, Y. V. (2010). Zigzags of evolution. Development of life and immunity. Moscow: Nauka i zhizn. (in Russian).

    Google Scholar 

  • Degens, E. T., Kempe, S., & Spitzy, A. (1984). Carbon dioxide: A biogeochemical portrait. In O. Hutziger (Ed.), The handbook of environmental chemistry (Vol. 1, pp. 125–215). Berlin: Springer.

    Google Scholar 

  • Farrar, J. F. (1976). The Lichen as an ecosystem: Observation and experiment. In D. H. Brown, D. L. Hawksworth, & R. H. Bayley (Eds.), Lichenology: Progress and problems (pp. 385–406). New York: Academic Press.

    Google Scholar 

  • Finegan, B. (1984). Forest succession. Nature, 312, 103–114.

    Article  Google Scholar 

  • Gorshkov, V. G. (1980). The structure of biospheric energy flux. Botanichesky zhurnal, 65(11), 1579–1590 (in Russian).

    Google Scholar 

  • Gorshkov, V. G. (1995). Physical and biological bases for sustainable life. Moscow: VINITI. (in Russian).

    Book  Google Scholar 

  • Gorshkov, V. G., & Makarieva, A. M. (2007). Biotic pump of atmospheric moisture as driver of the hydrological cycle on land. Hydrology and Earth System Sciences, 11, 1013–1033. Retrieved from http://www.bioticregulation.ru/common/pdf/hess07.pdf.

    Article  Google Scholar 

  • Gorshkov, V. G., Gorshkov, V. V., & Makarieva, A. M. (2000a). Biotic regulation of the environment: Key issues of global change. Chichester: Springer/Praxis.

    Google Scholar 

  • Gorshkov, V. G., Gorshkov, V. V., & Makarieva, A. M. (2000b). Biotic regulation of the environment: Key issue of global change. London: Springer.

    Google Scholar 

  • Gorshkov, V. G., Makarieva, A. M., & Gorshkov, V. V. (2004). Revising the fundamentals of ecological knowledge: The biota-environment interaction. Ecological Complexity, 1(1), 17–36.

    Article  Google Scholar 

  • Green, N. P. O., Stout, G. W., & Taylor, D. J. (1984). In R. Soper (Ed.), Biological science (Vol. 2). Cambridge: Cambridge University Press.

    Google Scholar 

  • Holmen, K. (1992). The global carbon cycle. In S. S. Butcher, R. J. Charlson, & G. H. Orians, G. V. Wolfe (Eds.), Global biogeochemical cycles (pp. 239–262). London: Academic Press.

    Google Scholar 

  • Houghton, R. A., Hobbie, E., Melillo, J. M., et al. (1983). Changes in the content of terrestrial biota and soils between 1860 and 1980: Net release of CO2 to the atmosphere. Ecological Monographs, 53, 235–262.

    Article  CAS  Google Scholar 

  • Houghton, R. A., Boone, R. D., Fruci, J. R., et al. (1987). The flux of carbon from terrestrial ecosystems to the atmosphere in 1980 due to changes in land use: Geographic distribution of the global flux. Tellus, 39B, 122–139.

    Article  CAS  Google Scholar 

  • Jablonsky, D. (1994). Extinctions in the fossil record. Philosophical Transactions of the Royal Society London B, 344(1), 11–17.

    Article  Google Scholar 

  • Lima-de-Faria, A. (1988). Evolution without selection. Form and function by autoevolution. Oxford: Elsevier.

    Google Scholar 

  • Makarieva, A. M., Gorshkov, V. G., & Vil’derer, P. A. (2014). On the scientific analysis of evolution. Energy: Economics, technology. Ekologia, 9, 65–70. (in Russian).

    Google Scholar 

  • Markov, A. V. (2015). The birth of complexity. Evolutionary biology today: Unexpected discoveries and new questions. Moscow: Astrel: CORPUS. (in Russian).

    Google Scholar 

  • Moiseyev, N. N. (1998). Once again on the problem of coevolution. Ekologia i zhizn, 33(7). (in Russian).

    Google Scholar 

  • Neftel, A., Oeschger, H., Schwander, J., Stauffer, B., & Zumbrunn, R. (1982). Ice core sample measurements give atmospheric CO2 content during the past 40,000 years. Nature, 295, 220–223.

    Article  CAS  Google Scholar 

  • Raven, P. H., & Johnson, G. B. (1998). Understanding biology. St. Louis: Times Mirror/Mosby College.

    Google Scholar 

  • Rotty, R. M. (1983). Distribution of and changes in industrial carbon dioxide production. Journal of Geophysical Research, 88(C2), 1301–1308.

    Article  CAS  Google Scholar 

  • Schwartzman, D. W., & Volk, T. (1989). Biotic enhancement of weathering and the habitability of Earth. Nature, 340, 457–460.

    Article  Google Scholar 

  • Watts, J. A. (1982). The carbon dioxide questions: Data sampler. In W. C. Clark (Ed.), Carbon dioxide review. New York: Clarendon Press.

    Google Scholar 

  • Whittaker, R. H., & Likens, G. E. (1975). The biosphere and man. In H. Lieth & R. Whittaker (Eds.), Primary productivity of the biosphere (pp. 305–328). Berlin: Springer.

    Chapter  Google Scholar 

  • Zavarzin, G. A. (2001). The making of the biosphere. Priroda, 11, 988–1001. (in Russian).

    Google Scholar 

  • Zavarzin, G. A. (2007). The anti-market in nature (Musings of a Naturalist). Vysshee obrazovanie v Rossii, 4, 123–130.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Danilov-Danil’yan, V.I., Reyf, I.E. (2018). Biotic Mechanisms for Supporting Environmental Stability. In: The Biosphere and Civilization: In the Throes of a Global Crisis. Springer, Cham. https://doi.org/10.1007/978-3-319-67193-2_12

Download citation

Publish with us

Policies and ethics