The Global Ecological Situation

  • Victor I. Danilov-Danil’yan
  • Igor E. Reyf
Chapter

Abstract

Unprecedented rate of change to the atmosphere—Destruction of natural ecosystems—Origin of the ecological crisis—Chemicalization of Earth’s biosphere—Forty-eight tons of waste per capita—Global cost of local environmental cleanup.

Keywords

Ecological crisis Carbon emissions СО2 accumulation Greenhouse effect Climate warming Biota Ecosystem destruction Forest ecosystems Deforestation Soil degradation Desertification Water pollution Biodiversity loss Living planet Environmental pollution Pollutants Hazardous waste Supertoxicant Dioxins Toxic pesticide Polychlorinated biphenyl Metal poisoning Solid waste Garbage incineration 

References

  1. Angliss, R. P., Outlaw, R. B. (2006). Bowhead whale (Balaena mysticetus): Western Arctic Stock. NOAA’s National Marine Fisheries Service, Alaska, National Marine Fisheries Service.Google Scholar
  2. Arsky, Y. M., Danilov-Danil’yan, V. I., Zalikhanov, M. C., Kondratyev, K. Y., Kotlyakov, V. M., & Losyev, K. S. (1997). Ecological problems. In What is going on? Who is to blame? What is to be done? Moscow: MNEPU. [in Russian].Google Scholar
  3. Baranowska, I., Barchanska, H., & Pyrsz, A. (2005). Distribution of pesticides and heavy metals in trophic chain. Chemosphere, 60, 1590–1589.CrossRefGoogle Scholar
  4. Barnola, J. M., Pimienta, P., Raynaud, D., & Korotkevich, Y. S. (1991). CO2 climate relationship as deduced from Vostok Ice Core: A re-examination based on new measurements and on re-evolution of the air dating. Tellus, 43B(2), 83–90.CrossRefGoogle Scholar
  5. BirdLife International. (2008). State of the world’s birds: indicators for our changing world. Cambridge, UK: BirdLife International. Retrieved from http://datazone.birdlife.org/userfiles/docs/SOWB2008_en.pdf.Google Scholar
  6. Brown, L., Gardner, G., & Halweil, B. (1999). Beyond Malthus: Nineteen dimensions of the population challenge. New York: W. W. Norton.Google Scholar
  7. Cannariato, K. G., Kennett, J. P., & Behl, R. J. (1999). Biotic response to late quaternary rapid climate switches in Santa Barbara Basin; ecological and evolutionary implications. Geology, 27(1), 63–66.CrossRefGoogle Scholar
  8. Colborn, T., Dumanoski, D., & Myers, J. P. (1996). Our stolen future. New York: Dutton.Google Scholar
  9. Coman, G., Draghici, C., Chirila, E., & Sica, M. (2007). Pollutants effects on human body: Toxicological approach. In Chemicals as intentional and accidental global environmental threats. Dordrecht: Springer.Google Scholar
  10. Danilov-Danil’yan, V. I., & Losev, K. S. (2000). The ecological challenge and sustainable development. Moscow: Progress-Traditsia. [in Russian].Google Scholar
  11. Danilov-Danil’yan, V. I., & Losev, K. S. (2006). Water usage: ecological, econonomic, social and political aspects. Moscow: Nauka. [in Russian].Google Scholar
  12. Dolnik, V. T. (1992). Are there biological mechanisms for regulating human population numbers? Priroda, 6, 3–16. Retrieved from http://vivovoco.astronet.ru/VV/PAPERS/ECCE/VV_EH13W.HTM. [in Russian].
  13. Europe’s Environment. (1995). Statistical compendium for the Dobris assessment. Eurostat: Luxemburg.Google Scholar
  14. FAO. (2010). Global Forest Resources Assessment: Key findings. Rome (Italy): FAO. Retrieved from http://www.fao.org/docrep/013/i1757e/i1757e.pdf.Google Scholar
  15. Gumilyov, L. N. (2014). An end and a new beginning. Moscow: Ayric-press. Retrieved from http://royallib.com/get/rtf/gumilyov_lev/konets_i_vnov_nachalo_populyarnie_lektsii_po_narodovedeniyu.zip. [in Russian].
  16. Jaworowski, Z. (1997). Another global warming fraud exposed: Ice core data show no carbon dioxide increase. 21st century. Science and Technology, 10(1), 42–52.Google Scholar
  17. Joshi, M., Hawkins, E., Sutton, R., Lowe, J., & Frame, D. (2011). Projections of when temperature change will exceed 2°C above pre-industrial levels. Nature Climate Change, 407–412.CrossRefGoogle Scholar
  18. Kemp, A. C., Horton, B. P., Donnelly, J. P., Mann, M. E., Vermeer, M., & Rahmstorf, S. (2011). Climate related sea-level variations over the past two millennia. Proceedings of the National Acadamy of Sciences of the United States, 108(27), 11017–11022.CrossRefGoogle Scholar
  19. Khudoley, V. V., & Mizgiryov, I. V. (1996). Ecologically dangerous factors. St. Petersburg: Izdatel’stvo “Bank Petrovsky”. [in Russian].Google Scholar
  20. Kondratyev, K. Y., & Donchenko, V. K. (1999). Ecodynamics and geopolitics. Vol. 1: Global problems. Saint Petersburg. [in Russian].Google Scholar
  21. Kondratyev, K. Y., Krapivin, V. F., & Potapov, I. I. (2005). Natural disaster statistics. Problems of the environment and natural resourses: General information (Vol. 5, pp. 55–76). Moscow. [in Russian].Google Scholar
  22. Lashof, D. A., & Ahuja, D. R. (1990). Relative global warming potentials of greenhouse gas emissions. Nature, 344, 529–531.CrossRefGoogle Scholar
  23. Le Quere, C., et al. (2013). The global carbon budget 1959–2011. Earth System Science Data, 5, 165–185. Retrieved from https://spiral.imperial.ac.uk/bitstream/10044/1/41754/3/essd-5-165-2013.pdf CrossRefGoogle Scholar
  24. Leopold, A. (1941). Lakes in relation to terrestrial life patterns. In A symposium on hydrology (pp. 17–22). Madison: University of Wisconsin Press.Google Scholar
  25. Maksakovsky, V. P. (2008). A geographical portrait of the world (in two books). Moscow: DROFA. [in Russian]. Book 1. Retrieved from http://www.twirpx.com/file/997779/. Book 2. Retrieved from http://www.twirpx.com/file/997899/ Google Scholar
  26. McNeely, J. A. (1992). The sinking ark: Pollution and the worldwide loss of biodiversity. Biodiversity and Conservation, 1, 2–18.CrossRefGoogle Scholar
  27. Meadows, D., Randers., J., & Meadows., D. (2006). The limits of growth: The 30 year update (pp. 57–61). London: Earthscan.Google Scholar
  28. National Research Council. (2011). Climate stabilization targets: Emissions, concentrations, and impacts over. Decades to millennia. Washington: National Academies Press.Google Scholar
  29. Nobel Prize. (2007). 2007 Nobel Peace Prize Laureates. Retrieved from http://www.nobelprize.org/nobel_prizes/peace/laureates/2007/
  30. Nowinski, N. S., Trumbore, S. E., Schuur, E. A. G., Mack, M. C., & Shaver, G. R. (2007). Nutrient addition prompts rapid destabilization of organic matter in an Arctic tundra ecosystem. Ecosystems, 2007.  https://doi.org/10.1007/s10021-007-9104-1. Retrieved from http://www.springerlink.com/content/t5650v8x5711l87k/
  31. Oak Ridge National Laboratory. (2011). Carbon dioxide emissions rebound quickly after global financial crisis. Tennessee, USA.Google Scholar
  32. OCHA. (2011). Horn of Africa Drought Crisis Situation Report No. 5. Retrieved from http://reliefweb.int/sites/reliefweb.int/files/resources/Full_report_166.pdf
  33. Odum, E. (1983). Basic ecology (p. 518). Philadelphia: Saunders.Google Scholar
  34. Pearce, F. (2005). Climate warning as Siberia melts. New Scientist. Aug 11.Google Scholar
  35. Quality of the Environment in Japan. (1999). Tokyo: Institute for Global Environmental Strategies.Google Scholar
  36. Rapp, D. (2008). Assessing climate change. Chichester: Springer/Praxis.Google Scholar
  37. Rogelj, J., Hare, W., Lowe, J., Van Vuuren, D. P., Riahi, K., Matthews, B., Hanaoka, T., Jiang, K., & Meinshausen, M. (2011). Emission pathways consistent with a 2_C global temperature limit. Nature Climate Change, 1, 413–418.CrossRefGoogle Scholar
  38. Rosanov, B. G., Targulian, V., & Orlov, D. S. (1990). Soils. In B. L. Turner et al. (Eds.), The earth as transformed by human action: Global and regional changes in the biosphere over the past 30 years. Cambridge: Cambridge University Press.Google Scholar
  39. Siegenthaler, U., Stocker, T. F., Monnin, E., Lüthi, D., Schwander, J., Stauffer, B., Raynaud, D., Barnola, J. M., Fischer, H., Masson-Delmotte, V., & Jouzel, J. (2005). Stable carbon cycle—Climate relationship during the Late Pleistocene. Science, 310(5752), 1313–1317.CrossRefGoogle Scholar
  40. Species Survival Commission. (2001). 2000 IUCN Red List of threatened species (p. 2000). Gland, Switzerland: International Union for the Conservation of Nature.Google Scholar
  41. State of the World’s forests. (2012). Rome: FAO. Retrieved from http://www.fao.org/3/a-i3010e.pdf
  42. Stine, A. R., Huybers, P., & Fung, I. Y. (2009). Changes in the phase of the annual cycle of surface temperature. Nature, 457, 435–441.CrossRefGoogle Scholar
  43. The Environment. (1993). Encyclopedic dictionary and reference. Moscow: Pangea. [in Russian].Google Scholar
  44. Titlyanova, A. A. (1994). Carbon dioxide and methane emissions into the atmosphere. Review of Applied and Industrial Mathematics, 6, 974–978. [in Russian].Google Scholar
  45. van Aalst, M. K. (2006). The impacts of climate change on the risk of natural disasters. Disasters, 30(1), 5–18.CrossRefGoogle Scholar
  46. Vitousek, P. M. (1994). Beyond global warming: Ecology and global change. Ecology, 75(7), 1861–1876.CrossRefGoogle Scholar
  47. Weber, U. (2000, June). The miracle of the Rhine. UNESCO Courier.Google Scholar
  48. Worldwatch Database. (2000). Retrieved from http://www.worldwatch.org/
  49. WWF Living Planet Report 2012. (2012). In M. Grooten (Ed.). Retrieved from http://www.footprintnetwork.org/content/images/uploads/LPR_2012.pdf
  50. Zakharov, A. N. (2014). Development tendencies of real capital in the world and the world economy (Vol. 4). Russian International Economic Vestnik.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Victor I. Danilov-Danil’yan
    • 1
  • Igor E. Reyf
    • 2
  1. 1.Correspondent Member of Russian Academy of SciencesDirector of the Water Problems Institute of RASMoscowRussia
  2. 2.Freelance Journalist/WriterFrankfurt am MainGermany

Personalised recommendations