Skip to main content

A Thorough Formalization of Conceptual Spaces

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10505))

Abstract

The highly influential framework of conceptual spaces provides a geometric way of representing knowledge. Instances are represented by points in a high-dimensional space and concepts are represented by convex regions in this space. After pointing out a problem with the convexity requirement, we propose a formalization of conceptual spaces based on fuzzy star-shaped sets. Our formalization uses a parametric definition of concepts and extends the original framework by adding means to represent correlations between different domains in a geometric way. Moreover, we define computationally efficient operations on concepts (intersection, union, and projection onto a subspace) and show that these operations can support both learning and reasoning processes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The weaker requirement of star-shapedness allows us to “cut out” some corners from the rectangle. This enables us to geometrically represent correlations.

  2. 2.

    We will drop the modifier “axis-parallel" from now on.

  3. 3.

    Note that if \(D_{S_1} \cap D_{S_2} = \emptyset \), then \(P_1 \cap P_2 \ne \emptyset \).

  4. 4.

    In some cases, the normalization constraint of the resulting domain weights might be violated. We can enforce this constraint by manually normalizing them.

References

  1. Adams, B., Raubal, M.: A metric conceptual space algebra. In: Hornsby, K.S., Claramunt, C., Denis, M., Ligozat, G. (eds.) COSIT 2009. LNCS, vol. 5756, pp. 51–68. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03832-7_4

    Chapter  Google Scholar 

  2. Adams, B., Raubal, M.: Conceptual Space Markup Language (CSML): towards the cognitive semantic web. In: IEEE International Conference on Semantic Computing, September 2009

    Google Scholar 

  3. Aggarwal, C.C., Hinneburg, A., Keim, D.A.: On the surprising behavior of distance metrics in high dimensional space. In: Van den Bussche, J., Vianu, V. (eds.) ICDT 2001. LNCS, vol. 1973, pp. 420–434. Springer, Heidelberg (2001). doi:10.1007/3-540-44503-X_27

    Chapter  Google Scholar 

  4. Aisbett, J., Gibbon, G.: A general formulation of conceptual spaces as a meso level representation. Artif. Intell. 133(1–2), 189–232 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Attneave, F.: Dimensions of similarity. Am. J. Psychol. 63(4), 516 (1950)

    Article  Google Scholar 

  6. Bělohlávek, R., Klir, G.J.: Concepts and Fuzzy Logic. MIT Press, Cambridge (2011)

    MATH  Google Scholar 

  7. Billman, D., Knutson, J.: Unsupervised concept learning and value systematicitiy: a complex whole aids learning the parts. J. Exp. Psychol. Learn. Mem. Cogn. 22(2), 458–475 (1996)

    Article  Google Scholar 

  8. Chella, A., Dindo, H., Infantino, I.: Anchoring by imitation learning in conceptual spaces. In: Bandini, S., Manzoni, S. (eds.) AI*IA 2005. LNCS, vol. 3673, pp. 495–506. Springer, Heidelberg (2005). doi:10.1007/11558590_50

    Chapter  Google Scholar 

  9. Chella, A., Frixione, M., Gaglio, S.: Conceptual spaces for computer vision representations. Artif. Intell. Rev. 16(2), 137–152 (2001)

    Article  MATH  Google Scholar 

  10. Chella, A., Frixione, M., Gaglio, S.: Anchoring symbols to conceptual spaces: the case of dynamic scenarios. Robot. Auton. Syst. 43(2–3), 175–188 (2003)

    Article  Google Scholar 

  11. Derrac, J., Schockaert, S.: Inducing semantic relations from conceptual spaces: a data-driven approach to plausible reasoning. Artif. Intell. 228, 66–94 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dietze, S., Domingue, J.: Exploiting conceptual spaces for ontology integration. In: Data Integration Through Semantic Technology (DIST 2008) Workshop at 3rd Asian Semantic Web Conference (ASWC 2008) (2008)

    Google Scholar 

  13. Douven, I., Decock, L., Dietz, R., Égré, P.: Vagueness: a conceptual spaces approach. J. Philos. Logic 42(1), 137–160 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fiorini, S.R., Gärdenfors, P., Abel, M.: Representing part-whole relations in conceptual spaces. Cogn. Process. 15(2), 127–142 (2013)

    Article  Google Scholar 

  15. Gärdenfors, P.: Conceptual Spaces: The Geometry of Thought. MIT Press, Cambridge (2000)

    Google Scholar 

  16. Gärdenfors, P.: The Geometry of Meaning: Semantics Based on Conceptual Spaces. MIT Press (2014)

    Google Scholar 

  17. Harnad, S.: The symbol grounding problem. Phys. D Nonlinear Phenom. 42(1–3), 335–346 (1990)

    Article  Google Scholar 

  18. Hernández-Conde, J.V.: A case against convexity in conceptual spaces. Synthese 193, 1–27 (2016)

    Article  MathSciNet  Google Scholar 

  19. Lewis, M., Lawry, J.: Hierarchical conceptual spaces for concept combination. Artif. Intell. 237, 204–227 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Medin, D.L., Shoben, E.J.: Context and structure in conceptual combination. Cogn. Psychol. 20(2), 158–190 (1988)

    Article  Google Scholar 

  21. Murphy, G.: The Big Book of Concepts. MIT Press, Cambridge (2002)

    Google Scholar 

  22. Osherson, D.N., Smith, E.E.: Gradedness and conceptual combination. Cognition 12(3), 299–318 (1982)

    Article  Google Scholar 

  23. Raubal, M.: Formalizing conceptual spaces. In: Third International Conference on Formal Ontology in Information Systems, vol. 114, pp. 153–164 (2004)

    Google Scholar 

  24. Rickard, J.T.: A concept geometry for conceptual spaces. Fuzzy Optim. Decis. Making 5(4), 311–329 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Rickard, J.T., Aisbett, J., Gibbon G.: Knowledge representation and reasoning in conceptual spaces. In: 2007 IEEE Symposium on Foundations of Computational Intelligence, April 2007

    Google Scholar 

  26. Ruspini, E.H.: On the semantics of fuzzy logic. Int. J. Approx. Reason. 5(1), 45–88 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  27. Schockaert, S., Prade, H.: Interpolation and extrapolation in conceptual spaces: a case study in the music domain. In: Rudolph, S., Gutierrez, C. (eds.) RR 2011. LNCS, vol. 6902, pp. 217–231. Springer, Heidelberg (2011). doi:10.1007/978-3-642-23580-1_16

    Chapter  Google Scholar 

  28. Shepard, R.N.: Attention and the metric structure of the stimulus space. J. Math. Psychol. 1(1), 54–87 (1964)

    Article  Google Scholar 

  29. Shepard, R.N.: Toward a universal law of generalization for psychological science. Science 237(4820), 1317–1323 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  30. Smith, C.R.: A characterization of star-shaped sets. Am. Math. Mon. 75(4), 386 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  31. Warglien, M., Gärdenfors, P., Westera, M.: Event structure, conceptual spaces and the semantics of verbs. Theor. Linguist. 38(3–4), 159–193 (2012)

    Google Scholar 

  32. Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)

    Article  MATH  Google Scholar 

  33. Zadeh, L.A.: A note on prototype theory and fuzzy sets. Cognition 12(3), 291–297 (1982)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucas Bechberger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Bechberger, L., Kühnberger, KU. (2017). A Thorough Formalization of Conceptual Spaces. In: Kern-Isberner, G., Fürnkranz, J., Thimm, M. (eds) KI 2017: Advances in Artificial Intelligence. KI 2017. Lecture Notes in Computer Science(), vol 10505. Springer, Cham. https://doi.org/10.1007/978-3-319-67190-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67190-1_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67189-5

  • Online ISBN: 978-3-319-67190-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics