Skip to main content

Evolving Kernel PCA Pipelines with Evolution Strategies

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10505))

Abstract

This paper introduces an evolutionary tuning approach for a pipeline of preprocessing methods and kernel principal component analysis (PCA) employing evolution strategies (ES). A simple (1+1)-ES adapts the imputation method, various preprocessing steps like normalization and standardization, and optimizes the parameters of kernel PCA. A small experimental study on a benchmark data set with missing values demonstrates that the evolutionary kernel PCA pipeline can be tuned with relatively few optimization steps, which makes evolutionary tuning applicable to scenarios with very large data sets.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    type numpy.nan in Python.

References

  1. Das, S., Abraham, A., Konar, A.: Automatic clustering using an improved differential evolution algorithm. IEEE Trans. Syst. Man Cybern. Part A 38(1), 218–237 (2008)

    Article  Google Scholar 

  2. Friedrichs, F., Igel, C.: Evolutionary tuning of multiple SVM parameters. Neurocomputing 64, 107–117 (2005)

    Article  Google Scholar 

  3. Jolliffe, I.: Principal Component Analysis. Springer Series in Statistics. Springer, New York (1986)

    Book  MATH  Google Scholar 

  4. Karami, A., Johansson, R.: Choosing DBSCAN parameters automatically using differential evolution. Int. J. Comput. Appl. 91(7), 1–11 (2014)

    Google Scholar 

  5. Kramer, O.: Hybrid manifold clustering with evolutionary tuning. In: Mora, A.M., Squillero, G. (eds.) EvoApplications 2015. LNCS, vol. 9028, pp. 481–490. Springer, Cham (2015). doi:10.1007/978-3-319-16549-3_39

    Google Scholar 

  6. Kwok, J.T., Mak, B., Ho, S.K.: Eigenvoice speaker adaptation via composite kernel PCA. In: Neural Information Processing Systems (NIPS), pp. 1401–1408 (2003)

    Google Scholar 

  7. Lückehe, D., Kramer, O.: Alternating optimization of unsupervised regression with evolutionary embeddings. In: Mora, A.M., Squillero, G. (eds.) EvoApplications 2015. LNCS, vol. 9028, pp. 471–480. Springer, Cham (2015). doi:10.1007/978-3-319-16549-3_38

    Google Scholar 

  8. Olson, R.S., Bartley, N., Urbanowicz, R.J., Moore, J.H.: Evaluation of a tree-based pipeline optimization tool for automating data science. In: Genetic and Evolutionary Computation Conference (GECCO), pp. 485–492 (2016)

    Google Scholar 

  9. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  10. Schölkopf, B., Smola, A., Müller, K.-R.: Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput. 10(5), 1299–1319 (1998)

    Article  Google Scholar 

  11. Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian optimization of machine learning algorithms. In: Neural Information Processing Systems (NIPS), pp. 2960–2968 (2012)

    Google Scholar 

  12. Sun, R., Tsung, F., Qu, L.: Integrating KPCA with an improved evolutionary algorithm for knowledge discovery in fault diagnosis. In: Leung, K.S., Chan, L.-W., Meng, H. (eds.) IDEAL 2000. LNCS, vol. 1983, pp. 174–179. Springer, Heidelberg (2000). doi:10.1007/3-540-44491-2_26

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Kramer .

Editor information

Editors and Affiliations

A Data Sets

A Data Sets

UCI Digits comprises handwritten Digits with \(d=64\). Friedman is a regression problem generated with scikit-learn and \(d=500\). The Wind data set is based on spatio-temporal time series data from the National Renewable Energy Laboratory (NREL) comprising 11 three MW turbines for three years in a 10-minute resolution, resulting in \(d=11\) dimensions. The Image data set contains image segmentation data with \(d=19\) dimensions.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Kramer, O. (2017). Evolving Kernel PCA Pipelines with Evolution Strategies. In: Kern-Isberner, G., Fürnkranz, J., Thimm, M. (eds) KI 2017: Advances in Artificial Intelligence. KI 2017. Lecture Notes in Computer Science(), vol 10505. Springer, Cham. https://doi.org/10.1007/978-3-319-67190-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67190-1_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67189-5

  • Online ISBN: 978-3-319-67190-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics