Skip to main content

Understanding Adhesion

  • Chapter
  • First Online:

Abstract

Adhesion strength is often cited as the most important characteristic of cold spray coatings, especially in regard to repair applications. The bonded interface between coating and substrate is complex and calls into play many mechanical and chemical facets. Exploring this phenomenon has been of great interest to the scientific community in recent years. Adhesion research can be separated into two streams; one focuses on the mechanism of metallic bonding and the influence that cold spray parameters have on particle deformation, oxide removal, and the resulting particle/substrate interface. The other stream focuses on characterizing the influence of substrate preparation prior to deposition on adhesion. The experimental observations reported in this chapter are often supported with finite element modeling, as the high strain rates and very short impact times in cold spray processing make it difficult to observe local behavior. This chapter aims to summarize the current state of understanding with respect to the different adhesion mechanisms and the physics involved in the bonding process—with the goal of providing concise information that can be applied to the prediction and improvement of cold spray adhesion strength, particularly for structural repairs and coating applications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ajdelsztajn L et al (2005) Cold spray deposition of nanocrystalline aluminum alloys. Metall Mater Trans A 36A:657–662

    Article  Google Scholar 

  • Akbarimousavi A, Alhassani S (2005) Numerical and experimental studies of the mechanism of the wavy interface formations in explosive/impact welding. J Mech Phys Solids 53(11):2501–2528

    Article  Google Scholar 

  • Alkhimov AP (1994) US patent-gas-dynamic spraying method for applying a coating. US5302414 A

    Google Scholar 

  • Alkhimov AP, Kosarev VF, Klinkov SV (2001) The features of cold spray nozzle design. J Therm Spray Technol 10:375–381

    Article  Google Scholar 

  • Assadi H et al (2003) Bonding mechanism in cold gas spraying. Acta Mater 51(15):4379–4394

    Article  Google Scholar 

  • Assadi H et al (2011) On parameter selection in cold spraying. J Therm Spray Technol 20(6):1161–1176

    Article  Google Scholar 

  • Assadi H et al (2016) Cold spraying – a materials perspective. Acta Mater 116:382–407

    Article  Google Scholar 

  • Bae G et al (2008) General aspects of interface bonding in kinetic sprayed coatings. Acta Mater 56(17):4858–4868

    Article  Google Scholar 

  • Bae G et al (2009) Bonding features and associated mechanisms in kinetic sprayed titanium coatings. Acta Mater 57(19):5654–5666

    Article  Google Scholar 

  • Barradas S et al (2007) Laser shock flier impact simulation of particle-substrate interactions in cold spray. J Therm Spray Technol 16(4):548–556

    Article  Google Scholar 

  • Bolesta AV et al (2001) Investigation of interface boundary occurring during cold gas-dynamic spraying of metallic particles. Nucl Instrum Methods Phys Res, Sect A 470(1–2):249–252

    Article  Google Scholar 

  • Borchers C et al (2004) Microstructural bonding features of cold sprayed face centered cubic metals. J Appl Phys 96(8):4288

    Article  Google Scholar 

  • Branicio PS, Rino JP (2000) Large deformation and amorphization of Ni nanowires under uniaxial strain: a molecular dynamics study. Phys Rev B: Condens Matter Mater Phys 62(24):16950–16955

    Article  Google Scholar 

  • Bray M, Cockburn A, Neill WO (2009) Surface and coatings technology the laser-assisted cold spray process and deposit characterisation. Surf Coat Technol 203(19):2851–2857

    Article  Google Scholar 

  • Burlacov I et al (2007) Cold gas dynamic spraying (CGDS) of TiO 2 (anatase) powders onto poly(sulfone) substrates: microstructural characterisation and photocatalytic efficiency. J Photochem Photobiol A Chem 187:285–292

    Article  Google Scholar 

  • Callister W, Rethwisch D (2008) Materials science and engineering: an introduction, 8th edn. Wiley, Hoboken

    Google Scholar 

  • Champagne VK et al (2005) Interface material mixing formed by the deposition of copper on aluminum by means of the cold spray process. J Therm Spray Technol 14(3):330–334

    Article  Google Scholar 

  • Christoulis DK et al (2010) Cold-spraying coupled to nano-pulsed Nd-YaG laser surface pre-treatment. J Therm Spray Technol 19(5):1062–1073

    Article  Google Scholar 

  • Cormier Y et al (2015) Finite element analysis and failure mode characterization of pyramidal fin arrays produced by masked cold gas dynamic spray. J Therm Spray Technol 24(8):1549–1565

    Article  Google Scholar 

  • Danlos Y et al (2010) Ablation laser and heating laser combined to cold spraying. Surf Coat Technol 205(4):1055–1059

    Article  Google Scholar 

  • Danlos Y et al (2017) Surface & coatings technology ablation laser and heating laser combined to cold spraying. Surf Coat Technol 205(4):1055–1059

    Article  Google Scholar 

  • Day J, Huang X, Richards NL (2005) Examination of a grit-blasting process for thermal spraying using statistical methods. J Therm Spray Technol 14(4):471–479

    Article  Google Scholar 

  • Dosta S et al (2017) Plastic deformation phenomena during cold spray impact of WC-Co particles onto metal substrates. Acta Mater 124:173–181

    Article  Google Scholar 

  • Drehmann R et al (2014a) Interface characterization and bonding mechanisms of cold gas-sprayed Al coatings on ceramic substrates. J Therm Spray Technol 24(1–2):92–99

    Google Scholar 

  • Drehmann R et al (2014b) Splat formation and adhesion mechanisms of cold gas-sprayed al coatings on Al2O3 substrates. J Therm Spray Technol 23(1-2):68–75

    Article  Google Scholar 

  • Dykhuizen RC, Smith MF (1998) Gas dynamic principles of cold spray. J Therm Spray Technol 7(June):205–212

    Article  Google Scholar 

  • Fernandez R et al (2016) Enhancement and prediction of adhesion strength of copper cold spray coatings on steel substrates for nuclear fuel repository. J Therm Spray Technol 25(8):1577–1587

    Article  Google Scholar 

  • Fukumoto M et al (2007) Effect of substrate temperature on deposition behavior of copper particles on substrate surfaces in the cold spray process. J Therm Spray Technol 16(5–6):643–650

    Article  Google Scholar 

  • Ganesan A et al (2012) Bonding behavior studies of cold sprayed copper coating on the PVC polymer substrate. Surf Coat Technol 207:262–269

    Article  Google Scholar 

  • Gao H, Liu C, Song FH (2013) Molecular dynamics simulation of the influence factors of particle depositing on surface during cold spray. Adv Mater Mater Processing Pts 1-3:1916–1924

    Google Scholar 

  • Gärtner F et al (2003) Numerical and microstructural investigations of the bonding mechanisms in cold spraying. In: Prodceedings of the 2003 Thermal Spray Conference “Thermal Spray 2003: advancing the science and applying the technology.”, ITSC 2003. ASM International, Materials Park USA

    Google Scholar 

  • Ghelichi R et al (2011) Numerical simulation of cold spray coating. Surf Coat Technol 205(23–24):5294–5301

    Article  Google Scholar 

  • Gilmore DL et al (1999) Particle velocity and deposition efficiency in the cold spray process. J Therm Spray Technol 8(December):576–582

    Article  Google Scholar 

  • Goldbaum D et al (2012) The effect of deposition conditions on adhesion strength of Ti and Ti6Al4V cold spray splats. J Therm Spray Technol 21(2):288–303

    Article  Google Scholar 

  • Grujicic M et al (2003) Computational analysis of the interfacial bonding between feed-powder particles and the substrate in the cold-gas dynamic-spray process. Appl Surf Sci 219(3–4):211–227

    Article  Google Scholar 

  • Grujicic M et al (2004) Adiabatic shear instability based mechanism for particles/substrate bonding in the cold-gas dynamic-spray process. Mater Des 25(8):681–688

    Article  Google Scholar 

  • Guetta S et al (2009) Influence of particle velocity on adhesion of cold-sprayed splats. J Therm Spray Technol 18(3):331–342

    Article  Google Scholar 

  • Hamaker HC (1937) The London—van der Waals attraction between spherical particles. Physica 4(10):1058–1072

    Article  Google Scholar 

  • Harris AF, Beevers A (1999) The effects of grit-blasting on surface properties for adhesion. J Adhes 19(November 1998):445–452

    Google Scholar 

  • Huang RZ, Fukanuma H (2009) The influence of spray conditions on deposition characteristics of aluminum coatings in cold spraying. Proceeding of the International Thermal Spray Conference:279–284. Available at: http://plasma.co.jp/about/pdf/2009-3.pdf

  • Huang R, Fukanuma H (2012) Study of the influence of particle velocity on adhesive strength of cold spray deposits. J Therm Spray Technol 21(3–4):541–549

    Article  Google Scholar 

  • Hussain T et al (2009) Bonding mechanisms in cold spraying: the contributions of metallurgical and mechanical components. J Therm Spray Technol 18(3):364–379

    Article  Google Scholar 

  • Ikeda H et al (1999) Strain rate induced amorphization in metallic nanowires. Phys Rev Lett 82(14):2900–2903

    Article  Google Scholar 

  • Irissou E, Arsenault B (2007) Corrosion study of cold sprayed aluminum coatings onto Al 7075 alloy. Coating (January 2007):549–554

    Google Scholar 

  • Irissou E et al (2007) Investigation of Al-Al 2O 3 cold spray coating formation and properties. J Therm Spray Technol:661–668

    Google Scholar 

  • Israelachvili JN (1974) The nature of van der Waals forces. Contemp Phys 15(2):159–178

    Article  Google Scholar 

  • Ji G-C et al (2013) Characterization of cold-sprayed multimodal WC-12Co coating. Surf Coat Technol 235:536–543

    Article  Google Scholar 

  • Jodoin B (2002) Cold spray nozzle Mach number limitation. J Therm Spray Technol 11(December):496–507

    Article  Google Scholar 

  • Jodoin B, Raletz F, Vardelle M (2006) Cold spray modeling and validation using an optical diagnostic method. Surf Coat Technol 200(14–15):4424–4432

    Article  Google Scholar 

  • Johnson GR, Cook WH (1983) A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. Proceedings of the 7th International Symposium on Ballistics 547:541–547

    Google Scholar 

  • Johnson GR, Holmquist TJ (1994) An improved computational constitutive model for brittle materials. AIP Conf Proc J Appl Phys 309(74):1639–1752

    Google Scholar 

  • Kapoor R, Nemat-Nasser S (1998) Determination of temperature rise during high strain rate deformation. Mech Mater 27(1):1–12

    Article  Google Scholar 

  • Karimi A, Martin JL (1986) Cavitation erosion of materials. Int Mater Rev 31(1):1–26

    Article  Google Scholar 

  • Kim K, Watanabe M, Kuroda S (2009) Jetting-out phenomenon associated with bonding of warm-sprayed titanium particles onto steel substrate. J Therm Spray Technol 18(4):490–499

    Article  Google Scholar 

  • Kim K, Watanabe M, Kuroda S (2010) Bonding mechanisms of thermally softened metallic powder particles and substrates impacted at high velocity. Surf Coat Technol 204(14):2175–2180

    Article  Google Scholar 

  • King PC, Jahedi M (2010) Relationship between particle size and deformation in the cold spray process. Appl Surf Sci 256(6):1735–1738

    Article  Google Scholar 

  • King PC, Zahiri SH, Jahedi M (2008) Focused ion beam micro-dissection of cold-sprayed particles. Acta Mater 56(19):5617–5626

    Article  Google Scholar 

  • King PC et al (2010) An experimental and finite element study of cold spray copper impact onto two aluminum substrates. J Therm Spray Technol 19(3):620–634

    Article  Google Scholar 

  • King PC et al (2013) Embedment of copper particles into polymers by cold spray. Surf Coat Technol 216:60–67

    Article  Google Scholar 

  • King PC et al (2014) Interface melding in cold spray titanium particle impact. Surf Coat Technol 239:191–199

    Article  Google Scholar 

  • Klinkov SV, Kosarev VF (2006) Measurements of cold spray deposition efficiency. J Therm Spray Technol 15(3):364–371

    Article  Google Scholar 

  • Kromer R et al (2016) Laser surface texturing to enhance adhesion bond strength of spray coatings – cold spraying, wire-arc spraying, and atmospheric plasma spraying. Surf Coat Technol. 2017. https://doi.org/10.1016/j.surfcoat.2017.05.007

  • Kwon EH et al (2005) Particle behavior in supersonic flow during the cold spray process. Met Mater Int 11(5):377–381

    Article  Google Scholar 

  • Lee HY et al (2005) Correlation between Al2O3 particles and interface of Al–Al2O3 coatings by cold spray. Appl Surf Sci 252(5):1891–1898

    Article  Google Scholar 

  • Legoux JG, Irissou E, Moreau C (2007) Effect of substrate temperature on the formation mechanism of cold-sprayed aluminum, zinc and tin coatings. J Therm Spray Technol 16(5–6):619–626

    Article  Google Scholar 

  • Li W-Y, Gao W (2009) Some aspects on 3D numerical modeling of high velocity impact of particles in cold spraying by explicit finite element analysis. Appl Surf Sci 255:7878–7892

    Article  Google Scholar 

  • Li C-J, Li W-Y, Wang Y-Y (2005) Formation of metastable phases in cold-sprayed soft metallic deposit. Surf Coat Technol 198(1–3):469–473

    Article  Google Scholar 

  • Li C-J, Li W-Y, Liao H (2006) Examination of the critical velocity for deposition of particles in cold spraying. J Therm Spray Technol 15(2):212–222

    Article  Google Scholar 

  • Li W-Y, Liao H et al (2007a) Numerical simulation of deformation behavior of Al particles impacting on Al substrate and effect of surface oxide films on interfacial bonding in cold spraying. Appl Surf Sci 253(11):5084–5091

    Article  Google Scholar 

  • Li W-Y, Zhang C et al (2007b) Study on impact fusion at particle interfaces and its effect on coating microstructure in cold spraying. Appl Surf Sci 254(2):517–526

    Article  Google Scholar 

  • Li W-Y et al (2008) Effect of standoff distance on coating deposition characteristics in cold spraying. Mater Des 29(2):297–304

    Article  Google Scholar 

  • Li WY, Yin S, Wang XF (2010) Numerical investigations of the effect of oblique impact on particle deformation in cold spraying by the SPH method. Appl Surf Sci 256(2010):3725–3734

    Article  Google Scholar 

  • Luo X-T et al (2014) High velocity impact induced microstructure evolution during deposition of cold spray coatings: a review. Surf Coat Technol 254:11–20

    Article  Google Scholar 

  • MacDonald D et al (2016) Effect of nozzle material on downstream lateral injection cold spray performance. J Therm Spray Technol 25(6):1149–1157

    Article  Google Scholar 

  • Mäkinen H, Lagerbom J, PV (2007) Adhesion of cold sprayed coatings: effect of powder, substrate, and heat treatment. In: Prodceedings of the 2007 Thermal Spray Conference “Thermal Spray 2007: global coating solutions”, ITSC 2007. ASM International, Materials Park USA

    Google Scholar 

  • Marrocco T et al (2006) Production of titanium deposits by cold-gas dynamic spray: numerical modeling and experimental characterization. J Therm Spray Technol 15(2):263–272

    Article  Google Scholar 

  • McDonald AG et al (2013) Gas-substrate heat exchange during cold-gas dynamic spraying. J Therm Spray Technol 22(2–3):391–397

    Article  Google Scholar 

  • Mohamed HA, Washburn J (1975) Mechanism of solid state pressure welding. Weld J 54:302–310s

    Google Scholar 

  • Ning XJ et al (2008) Cold spraying of Al-Sn binary alloy: coating characteristics and particle bonding features. Surf Coat Technol 202(9):1681–1687

    Article  Google Scholar 

  • Ozdemir OC et al (2016) Estimating the effect of helium and nitrogen mixing on deposition efficiency in cold spray. J Therm Spray Technol 25(4):660–671

    Article  Google Scholar 

  • Papyrin A (2001) Cold spray technology. Adv Mater Proc 159(9):49–52

    Google Scholar 

  • Pattison J et al (2008) Standoff distance and bow shock phenomena in the cold spray process. Surf Coat Technol 202(8):1443–1454

    Article  Google Scholar 

  • Preston DL et al (2003) Model of plastic deformation for extreme loading conditions. J Appl Phys 931(10):1498–1528

    Google Scholar 

  • Price MC, Kearsley AT, Burchell MJ (2013) Validation of the Preston–Tonks–Wallace strength model at strain rates approaching ∼1011 s−1 for Al-1100, tantalum and copper using hypervelocity impact crater morphologies. Int J Impact Eng 52:1–10

    Article  Google Scholar 

  • Rafaja D et al (2009) Microstructural characterisation of titanium coatings deposited using cold gas spraying on Al 2 O 3 substrates. Surf Coat Technol 203:3206–3213

    Article  Google Scholar 

  • Rahmati S, Ghaei A (2014) The use of particle/substrate material models in simulation of cold-gas dynamic-spray process. J Therm Spray Technol 23(3):530–540

    Article  Google Scholar 

  • Raletz F, Vardelle M, Ezo’o G (2006) Critical particle velocity under cold spray conditions. Surf Coat Technol 201(5):1942–1947

    Article  Google Scholar 

  • Rollot Y, Régnier S, Guinot J-C (1999) Simulation of micro-manipulations: adhesion forces and specific dynamic models. Int J Adhes Adhes 19(1):35–48

    Article  Google Scholar 

  • Samson T et al (2015) Effect of pulsed waterjet surface preparation on the adhesion strength of cold gas dynamic sprayed aluminum coatings. J Therm Spray Technol 24(August):984–993

    Article  Google Scholar 

  • Schmidt T, Gaertner F, Kreye H (2006a) New developments in cold spray based on higher gas and particle temperatures. J Therm Spray Technol 15(December):488–494

    Article  Google Scholar 

  • Schmidt T et al (2006b) Development of a generalized parameter window for cold spray deposition. Acta Mater 54(3):729–742

    Article  Google Scholar 

  • Schmidt T et al (2009) From particle acceleration to impact and bonding in cold spraying. J Therm Spray Technol 18(5–6):794–808

    Article  Google Scholar 

  • Schmidt K et al (2017) Ti surface modification by cold spraying with TiO2 microparticles. Surf Coat Technol 309:749–758

    Article  Google Scholar 

  • Semenov AP (1961) The phenomenon of seizure and its investigation. Wear 4(1):1–9

    Article  Google Scholar 

  • Sharma MM, Eden TJ, Golesich BT (2014) Effect of surface preparation on the microstructure, adhesion, and tensile properties of cold-sprayed aluminum coatings on AA2024 substrates. J Therm Spray Technol 24(3):410–422

    Article  Google Scholar 

  • Stoltenhoff T, Kreye H, Richter HJ (2002) An analysis of the cold spray process and its coatings. J Therm Spray Technol 11(4):542–550

    Article  Google Scholar 

  • Van Steenkiste T, Smith JR (2004) Evaluation of coatings produced via kinetic and cold spray processes. J Therm Spray Technol 13(2):274–282

    Article  Google Scholar 

  • Vijay MM et al (2013) US patent-method and apparatus for prepping surfaces with a high-frequency forced pulsed waterjet. 8,550,873 B2

    Google Scholar 

  • Villafuerte J (ed) (2015) Modern cold spray. Springer International Publishing, Windsor

    Google Scholar 

  • Vlcek J et al (2005) A systematic approach to material eligibility for the cold-spray process. J Therm Spray Technol 14(1):125–133

    Article  Google Scholar 

  • Wang Q et al (2010) The influence of ceramic particles on bond strength of cold spray composite coatings on AZ91 alloy substrate. Surf Coat Technol 205:50–56

    Article  Google Scholar 

  • Wang Q et al (2014) High resolution microstructure characterization of the interface between cold sprayed Al coating and Mg alloy substrate. Appl Surf Sci 289:366–369

    Article  Google Scholar 

  • Wank A et al (2006) High-resolution microstructural investigations of interfaces between light metal alloy substrates and cold gas-sprayed coatings. J Therm Spray Technol 15(2):280–283

    Article  Google Scholar 

  • Watanabe Y et al (2014) Influence of substrate temperature on adhesion strength of cold-sprayed coatings. J Therm Spray Technol 24(1–2):86–91

    Google Scholar 

  • Wigren J (1988) Technical note: grit blasting as surface preparation before plasma spraying. Surf Coat Technol 34(1):101–108

    Article  Google Scholar 

  • Wong W et al (2011) Influence of helium and nitrogen gases on the properties of cold gas dynamic sprayed pure titanium coatings. J Therm Spray Technol 20(1–2):213–226

    Article  Google Scholar 

  • Wu J et al (2006) The bond strength of Al–Si coating on mild steel by kinetic spraying deposition. Appl Surf Sci 252(22):7809–7814

    Article  Google Scholar 

  • Xie Y, Planche MP et al (2016a) Effect of substrate preheating on adhesive strength of SS 316L cold spray coatings. J Therm Spray Technol 25(1–2):123–130

    Article  Google Scholar 

  • Xie Y, Yin S et al (2016b) New insights into the coating/substrate interfacial bonding mechanism in cold spray. Scr Mater 125:1–4

    Article  Google Scholar 

  • Xiong Y et al (2008) Dynamic amorphization and recrystallization of metals in kinetic spray process. Appl Phys Lett 92(19):194101

    Article  Google Scholar 

  • Xiong Y et al (2011) Dependence of bonding mechanisms of cold sprayed coatings on strain-rate-induced non-equilibrium phase transformation. J Therm Spray Technol 20(4):860–865

    Article  Google Scholar 

  • Yamada M et al (2010) Cold spraying of TiO2 photocatalyst coating with nitrogen process gas. J Therm Spray Technol 19(6):1218–1223

    Article  Google Scholar 

  • Yin S et al (2011) Examination on substrate preheating process in cold gas dynamic spraying. J Therm Spray Technol 20(4):852–859

    Article  Google Scholar 

  • Yin S et al (2012) Deformation behavior of the oxide film on the surface of cold sprayed powder particle. Appl Surf Sci 259:294–300

    Article  Google Scholar 

  • Yin S et al (2013) Deposition behavior of thermally softened copper particles in cold spraying. Acta Mater 61(14):5105–5118

    Article  Google Scholar 

  • Yin S et al (2015) Effect of substrate temperature on interfacial bonding for cold spray of Ni onto Cu. J Mater Sci 50(22):7448–7457

    Article  Google Scholar 

  • Zhou XL et al (2011) Preparation of metallic coatings on polymer matrix composites by cold spray. Surf Coat Technol 206(1):132–136

    Article  Google Scholar 

  • Zou Y et al (2009) Dynamic recrystallization in the particle/particle interfacial region of cold-sprayed nickel coating: electron backscatter diffraction characterization. Scr Mater 61:899–902

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Daniel MacDonald or Aleksandra Nastic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

MacDonald, D., Nastic, A., Jodoin, B. (2018). Understanding Adhesion. In: Cavaliere, P. (eds) Cold-Spray Coatings. Springer, Cham. https://doi.org/10.1007/978-3-319-67183-3_15

Download citation

Publish with us

Policies and ethics