Skip to main content

An Artificial Neural Network Model for the Prediction of Bruxism by Means of Occlusal Variables

  • Conference paper
  • First Online:
  • 1218 Accesses

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 649))

Abstract

The objective of the present work was to create an artificial neural network model able to classify individuals suffering from bruxism in clenching and grinding patients according to the value of certain occlusal variables and other parameters. Patients suspected of bruxism represent a very heterogeneous group. Some require immediate treatment while others, with only minor disorders, may not need treatment at all.

Artificial neural network (ANN) ensembles models were trained on with data from 325 bruxist patients examined at the Department of Prosthodontics and Occlusion (Craniomandibular Dysfunction Unit) of Oviedo University. The information retrieved from each patient included some occlusal variables and other information such as their gender and age. The models were analysed using Receiver Operating Characteristics (ROC) curve analysis, calibration assessments, inter- and intra-method variations. Effective odds ratios for the ANN ensembles were compared between each model.

The ANN ensemble approach resulted in an area under the ROC curve of 86%. At 95% sensitivity the specificity was 84.1%, for the existence of 43.5% of bruxists clenching patients in the population of the study. This population corresponds to a grinding patients’ best predictive value of 97.2% and a clenching patients’ best predictive value of 89.5% both using the bagging method. The artificial neural network model obtained can distinguish between clenching and grinding patients requiring the analysis of a few variables and with a high rate of success.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kalamir, A., Pollard, H., Vitiello, A.L., Bonello, R.: TMD and the problem of bruxism. A review. J. Bodyw. Mov. Therapies 11, 183–193 (2007)

    Article  Google Scholar 

  2. Dorland, W.A.N.: Dorland’s Illustrated Medical Dictionary. Elsevier-Saunders, Philadelphia (2003)

    Google Scholar 

  3. Klineberg, I.: Occlusion: Principles and Treatment. Wright, Oxford (1999)

    Google Scholar 

  4. Pergamalian, S.A., Rudy, T.E., Zaki, H.S., Greco, C.M.: The association between wear facets, bruxism, and severity of facial pain in patients with temporomandibular disorders. J. Prosthet. Dent. 90, 194–200 (2003)

    Article  Google Scholar 

  5. Helkimo, M.: Studies on function and dysfunction of the masticatory system. II. Index for anamnestic and clinical dysfunction and occlusal state. Svensk tandlakare tidskrift 67, 101–121 (1974)

    Google Scholar 

  6. Dworkin, S.F., LeResche, L.: Research diagnostic criteria for temporomandibular disorders: review, criteria, examinations and specifications, critique. J. Craniomandib. Disorders 6, 301–355 (1992)

    Google Scholar 

  7. Fu, K., Ma, X., Zhang, Z., Tian, Y., Zhou, Y., Zhao, Y.: Study on the use of temporomandibular joint dysfunction index in temporomandibular disorders. Zhonghua Kou Qiang Yi Xue Za Zhi 37, 330–332 (2002)

    Google Scholar 

  8. Živko-Babić, J., Lisjak, D., Ćurković, L., Jakovac, M.: Estimation of chemical resistance of dental ceramics by neural networks. Dent. Mater. 24, 18–27 (2008)

    Article  Google Scholar 

  9. Fernández, J.R.A., Muñiz, C.D., Nieto, P.J.G., de Cos Juez, F.J., Lasheras, F.S., et al.: Forecasting the cyanotoxins presence in fresh waters: a new model based on genetic algorithms combined with the MARS technique. Ecol. Eng. 53, 68–78 (2013)

    Article  Google Scholar 

  10. de Cos Juez, F.J., Suárez-Suárez, M.A., Lasheras, F.S., Murcia-Mazón, A.: Application of neural networks to the study of the influence of diet and lifestyle on the value of bone mineral density in post-menopausal women. Math. Comput. Model. 54(7), 1665–1670 (2011)

    Article  Google Scholar 

  11. Rokach, L.: Ensemble-based classifiers. Artif. Intell. Rev. 33, 1–39 (2010)

    Article  Google Scholar 

  12. De Bock, K.W., Coussement, K., Van den Poel, D.: Ensemble classification based on generalized additive models. Comput. Stat. Data Anal. 54, 1535–1546 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Basden, A.G., Atkinson, D., Bharmal, N.A., Bitenc, U., Brangier, M., Buey, T., et al.: Experience with wavefront sensor and deformable mirror interfaces for wide-field adaptive optics systems. Mon. Not. R. Astron. Soc. 459(2), 1350–1359 (2016)

    Article  Google Scholar 

  14. Vilán, J.A.V., Fernández, J.R.A., Nieto, P.J.G., Lasheras, F.S., de Cos Juez, F.J.: Support vector machines and multilayer perceptron networks used to evaluate the cyanotoxins presence from experimental cyanobacteria concentrations in the Trasona reservoir (Northern Spain). Water Resour. Manage. 27(9), 3457–3476 (2013)

    Article  Google Scholar 

  15. De Andrés, J., Sánchez-Lasheras, F., Lorca, P., de Cos Juez, F.J.: A hybrid device of Self Organizing Maps (SOM) and Multivariate Adaptive Regression Splines (MARS) for the forecasting of firms’ bankruptcy. Account. Manage. Inf. Syst. 10(3), 351 (2011)

    Google Scholar 

  16. Chen, H., Xu, Y., Ma, Y., Ma, B.: Neural network ensemble-based computer-aided diagnosis for differentiation of lung nodules on CT images. Clinical Eval. Academic Radiol. 17, 595–602 (2010)

    Article  Google Scholar 

  17. Menéndez, L.Á., de Cos Juez, F.J., Lasheras, F.S., Riesgo, J.A.Á.: Artificial neural networks applied to cancer detection in a breast screening programme. Math. Comput. Model. 52(7), 983–991 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Chawla, N.V., Moore, T.E., Hall, L.O., Bowyer, K.W., Kegelmeyer, W.P., Springer, C.: Distributed learning with bagging-like performance. Pattern Recogn. Lett. 24, 455–471 (2003)

    Article  Google Scholar 

  19. Green, M., Björk, J., Hansen, J., Ekelund, U., Edenbrandt, L., Ohlsson, M.: Detection of acute coronary syndromes in chest pain patients using neural network ensembles. In: Fonseca, J.M. (ed.) Proceedings of the Second International Conference on Computational Intelligence in Medicine and Healthcare, Lisbon. IEE/IEEE (2005)

    Google Scholar 

  20. West, D., Mangiameli, P., Rampal, R., West, V.: Ensemble strategies for a medical diagnostic decision support system: a breast cancer diagnosis application. Eur. J. Oper. Res. 162, 532–551 (2005)

    Article  MATH  Google Scholar 

  21. Levinkind, M.: A dental application of neural network computing: classification of complex electrical impedance measurements to aid root canal treatment. Neural Comput. Appl. 2(4), 209–215 (1994). https://doi.org/10.1007/BF01414809

    Article  Google Scholar 

  22. Azar, A.T.: Fast neural network learning algorithms for medical applications. Neural Comput. Appl. 23(3–4), 1019–1034 (2013). https://doi.org/10.1007/s00521-012-1026-y

    Article  Google Scholar 

  23. Hanley, J.A., Mcneil, B.J.: The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143, 29–36 (1982)

    Article  Google Scholar 

  24. Manfredini, D., Landi, N., Romagnoli, M., Bosco, M.: Psychic and occlusal factors in bruxers. Aust. Dent. J. 49, 84–89 (2004)

    Article  Google Scholar 

  25. Karasekreter, N., Başçiftçi, F., Fidan, U.: A new suggestion for an irrigation schedule with an artificial neural network. J. Exp. Theor. Artif. Intell. 25(1), 93–104 (2013). https://doi.org/10.1080/0952813X.2012.680071

    Article  Google Scholar 

  26. Tarassenko, L., Whitehouse, R., Gasparini, G., Harris, A.L.: Neural network prediction of relapse in breast cancer patients. Neural Comput. Appl. 4(2), 105–113 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ángel Álvarez-Arenal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Álvarez-Arenal, Á., deLlanos-Lanchares, H., Martin-Fernandez, E., González-Gutiérrez, C., Mauvezin-Quevedo, M., de Cos Juez, F.J. (2018). An Artificial Neural Network Model for the Prediction of Bruxism by Means of Occlusal Variables. In: Pérez García, H., Alfonso-Cendón, J., Sánchez González, L., Quintián, H., Corchado, E. (eds) International Joint Conference SOCO’17-CISIS’17-ICEUTE’17 León, Spain, September 6–8, 2017, Proceeding. SOCO ICEUTE CISIS 2017 2017 2017. Advances in Intelligent Systems and Computing, vol 649. Springer, Cham. https://doi.org/10.1007/978-3-319-67180-2_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67180-2_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67179-6

  • Online ISBN: 978-3-319-67180-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics