Genetic Consequences of Invasive Species in the Galapagos Islands

Chapter
Part of the Social and Ecological Interactions in the Galapagos Islands book series (SESGI)

Abstract

Species invasions of the Galapagos Islands is the number one threat to its endemic biodiversity. The Galapagos Islands support important human settlements, which combined with thousands of visitors per year making the archipelago highly susceptible to invasions of nonnative species. Invasive species reached the Galapagos most likely from mainland Ecuador and exhibit genetic signatures consistent with recent founder events. Comparisons between invasive populations in Galapagos and their native counterparts on the mainland reveal lower genetic diversity in the former. These invasions are generally consistent with our understanding of how invasive species reach and persist on islands, and help us to highlight the generality of this relevant biodiversity threat, as a path to search for potential solutions. Here, we present some examples of the genetic consequences of such invasions in the hopes that these can be used to inform policy, management, and science decisions concerning native and invasive species on the Galapagos.

Keywords

Human-mediated introduction Alien species Mitochondrial DNA Phylogenetics Genetic diversity Founder event Hybridization Genetic erosion Haplotype 

References

  1. Arbogast BS, Drovetski SV, Curry RL, Boag PT, Seutin G, Grant PR, Grant BR, Anderson DJ (2006) The origin and diversification of Galapagos mockingbirds. Evolution 60:370–382CrossRefGoogle Scholar
  2. Bataille A, Cunningham AA, Cedeño V, Cruz M, Eastwood G, Fonseca DM, Causton CE, Azuero R, Loayza J, Martinez JDC (2009a) Evidence for regular ongoing introductions of mosquito disease vectors into the Galapagos Islands. Proc R Soc Lond B Biol Sci rspb20090998Google Scholar
  3. Bataille A, Cunningham AA, Cedeño V, Patiño L, Constantinou A, Kramer LD, Goodman SJ (2009b) Natural colonization and adaptation of a mosquito species in Galapagos and its implications for disease threats to endemic wildlife. Proc Natl Acad Sci U S A 106:10230–10235CrossRefGoogle Scholar
  4. Benavides E, Baum R, McClellan D, Sites JW (2007) Molecular phylogenetics of the lizard genus Microlophus (squamata:tropiduridae): aligning and retrieving indel signal from nuclear introns. Syst Biol 56:776–797CrossRefGoogle Scholar
  5. Bradshaw AD (1965) Evolutionary significance of phenotypic plasticity in plants. In: Caspari EW, Thoday JM (eds) Advances in genetics, vol 13. Academic, New YorkGoogle Scholar
  6. Caccone A, Gibbs JP, Ketmaier V, Suatoni E, Powell JR (1999) Origin and evolutionary relationships of giant Galapagos tortoises. Proc Natl Acad Sci U S A 96:13223–13228CrossRefGoogle Scholar
  7. Causton CE, Sevilla C (2007) Últimos registros de invertebrados introducidos y su control en Galápagos. In: Galapagos Report 2006-2007. Galapagos National Park Directorate, Governing Council of Galapagos, Charles Darwin Foundation, and Galapagos Conservancy, Puerto Ayora, GalapagosGoogle Scholar
  8. Causton CE, Peck SB, Sinclair BJ, Roque-Albelo L, Hodgson CJ, Landry B (2006) Alien insects: threats and implications for the conservation of the Galapagos Islands. Ann Entomol Soc Am 99:121–143CrossRefGoogle Scholar
  9. Chaves JA, Parker PG, Smith TB (2012) Origin and population history of a recent colonizer, the yellow warbler in Galapagos and Cocos Islands. J Evol Biol 25:509–521CrossRefGoogle Scholar
  10. Chen I-C, Hill JK, Ohlemüller R, Roy DB, Thomas CD (2011) Rapid range shifts of species associated with high levels of climate warming. Science 333:1024–1026CrossRefGoogle Scholar
  11. Chown SL, Hodgins KA, Griffin PC, Oakeshott JG, Byrne M, Hoffmann AA (2015) Biological invasions, climate change and genomics. Evol Appl 8:23–46CrossRefGoogle Scholar
  12. Colautti RI, Barrett SCH (2013) Rapid adaptation to climate facilitates range expansion of an invasive plant. Science 342:364–366CrossRefGoogle Scholar
  13. Costa-da-Silva AL, Capurro ML, Bracco JE (2005) Genetic lineages in the yellow fever mosquito Aedes (Stegomyia) aegypti (Diptera: Culicidae) from Peru. Mem Inst Oswaldo Cruz 100:539–544CrossRefGoogle Scholar
  14. Cruz D, Causton CE (2007) Incrementa el tráfico aéreo a Galápagos. In: Galapagos Report 2006-2007. Galapagos National Park Directorate, Governing Council of Galapagos, Charles Darwin Foundation, and Galapagos Conservancy, Puerto Ayora, GalapagosGoogle Scholar
  15. Davidson AM, Jennions M, Nicotra AB (2011) Do invasive species show higher phenotypic plasticity than native species and, if so, is it adaptive? A meta-analysis. Ecol Lett 14:419–431CrossRefGoogle Scholar
  16. Dudaniec RY, Gardner MG, Donellan S, Kleindorfer S (2008) Genetic variation in the invasive avian parasite, Philornis downsi (Diptera, Muscidae) on the Galapagos archipelago. BMC Ecol 8:13CrossRefGoogle Scholar
  17. Fessl B, Couri MS, Tebbich S (2001) Philornis downsi Dodge & Aitken, new to the Galapagos Islands (Diptera, Muscidae). Studia Dipterologica 8:317–322Google Scholar
  18. Fundación Natura (1997) Informe Galápagos 1996-1997. In: Fundación Natura (Ecuador) y la WWFGoogle Scholar
  19. Gorrochotegui-Escalante N, Gomez-Machorro C, Lozano-Fuentes S, Fernandez-Salas L, De Lourdes Munoz M, Farfan-Ale JA, Garcia-Rejon J, Beaty BJ, Black WC (2002) Breeding structure of Aedes aegypti populations in Mexico varies by region. Am J Trop Med Hyg 66:213–222CrossRefGoogle Scholar
  20. Hoogmoed MS (1989) Introduced geckos in Puerto Ayora, Santa Cruz, with remarks on other areas. In: Noticias de Galápagos, Book 47Google Scholar
  21. Hulme PE, Le Roux JJ (2016) Invasive species shape evolution. Science 352:422–422CrossRefGoogle Scholar
  22. Jiménez-Uzcáteguia G, Carrión V, Zabala J, Buitrón P, Milstead B (2007) Estado de los vertebrados introducidos en Galápagos. In: Galapagos Report 2006-2007. Galapagos National Park Directorate, Governing Council of Galapagos, Charles Darwin Foundation, and Galapagos Conservancy, Puerto Ayora, GalapagosGoogle Scholar
  23. Kleindorfer S, Dudaniec RY (2016) Host-parasite ecology, behavior and genetics: a review of the introduced fly parasite Philornis downsi and its Darwin’s finch hosts. BMC Zool 1:1CrossRefGoogle Scholar
  24. Kraemer MUG, Sinka ME, Duda KA, Mylne AQN, Shearer FM, Barker CM, Moore CG, Carvalho RG, Coelho GE, Van Bortel W, Hendrickx G, Schaffner F, Elyazar IRF, Teng H-J, Brady OJ, Messina JP, Pigott DM, Scott TW, Smith DL, Wint GRW, Golding N, Hay SI (2015) The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus. eLife 4:e08347CrossRefGoogle Scholar
  25. Levin II, Zwiers P, Deem SL, Geest EA, Higashiguchi JM, Iezhova TA, Jiménez-Uzcátegui G, Kim DH, Morton JP, Perlut NG, Renfrew RB, Sari EHR, Valkiunas G, Parker PG (2013) Multiple lineages of Avian malaria parasites (Plasmodium) in the Galapagos Islands and evidence for arrival via migratory birds. Conserv Biol 27:1366–1377CrossRefGoogle Scholar
  26. Loope LL, Hamann O, Stone CP (1988) Comparative conservation biology of oceanic archipelagoes: Hawaii and the Galapagos. BioScience 38:272–282CrossRefGoogle Scholar
  27. MacArthur RH, Wilson EO (1963) An equilibrium theory of insular zoogeography. Evolution 17:373–387CrossRefGoogle Scholar
  28. McCormack JE, Heled J, Delaney KS, Peterson AT, Knowles LL (2011) Calibrating divergence times on species trees versus gene trees: implications for speciation history of Aphelocoma jays. Evolution 65:184–202CrossRefGoogle Scholar
  29. Mustafa M, Rasotgi V, Jain S, Gupta V (2015) Discovery of fifth serotype of dengue virus (DENV-5): a new public health dilemma in dengue control. Med J Armed Forces India 71:67–70CrossRefGoogle Scholar
  30. Olmedo LJ, Cayot LJ (1994) Introduced geckos in the towns of Santa Cruz, San Cristobal and Isabela. In: Noticias de Galapagos Book 53Google Scholar
  31. Parker PG, Buckles EL, Farrington H, Petren K, Whiteman NK, Ricklefs RE, Bollmer JL, Jiménez-Uzcátegui G (2011) 110 years of Avipoxvirus in the Galapagos Islands. PLoS One 6:e15989CrossRefGoogle Scholar
  32. Pazmiño DA (2011) Origen de las poblaciones introducidas de Scinax quinquefasciatus (Anura: Hylidae) en las islas Galápagos. Licenciatura, Pontificia Universidad Católica del Ecuador, Quito, EcuadorGoogle Scholar
  33. Pimentel D, McNair S, Janecka J, Wightman J, Simmonds C, O’Connell C, Wong E, Russel L, Zern J, Aquino T (2001) Economic and environmental threats of alien plant, animal, and microbe invasions. Agric Ecosyst Environ 84:1–20CrossRefGoogle Scholar
  34. Pybus OG, Harvey PH (2000) Testing macro–evolutionary models using incomplete molecular phylogenies. Proc R Soc Lond Ser B Biol Sci 267:2267–2272CrossRefGoogle Scholar
  35. Rabosky DL, Lovette IJ, Mooers A (2008) Explosive evolutionary radiations: decreasing speciation or increasing extinction through time? Evolution 62:1866–1875CrossRefGoogle Scholar
  36. Rey JR, Lounibos P (2015) Ecología de Aedes aegypti y Aedes albopictus en América y transmisión enfermedades. Biomédica 35:177–185CrossRefGoogle Scholar
  37. Reznick DN, Ghalambor CK (2001) The population ecology of contemporary adaptations: what empirical studies reveal about the conditions that promote adaptive evolution. Genetica 112:183–198CrossRefGoogle Scholar
  38. Rodriguez-Morales A (2015) Dengue and chikungunya were not enough: now also Zika arrived. Arch Med 11:e3Google Scholar
  39. Ruane S, Bryson RW, Pyron RA, Burbrink FT (2013) Coalescent species delimitation in milksnakes (genus Lampropeltis) and impacts on phylogenetic comparative analyses. Syst Biol 63:231–250CrossRefGoogle Scholar
  40. Sarrazin F, Lecomte J (2016) Evolution in the Anthropocene. Science 351:922–923CrossRefGoogle Scholar
  41. Sato A, O’HUigin C, Figueroa F, Grant PR, Grant BR, Tichy H, Klein J (1999) Phylogeny of Darwin’s finches as revealed by mtDNA sequences. Proc Natl Acad Sci U S A 96:5101–5106CrossRefGoogle Scholar
  42. Sax DF, Stachowicz JJ, Brown JH, Bruno JF, Dawson MN, Gaines SD, Grosberg RK, Hastings A, Holt RD, Mayfield MM, O’Connor MI, Rice WR (2007) Ecological and evolutionary insights from species invasions. Trends Ecol Evol 22:465–471CrossRefGoogle Scholar
  43. Schlichting CD, Levin DA (1986) Phenotypic plasticity: an evolving plant character. Biol J Linn Soc 29:37–47CrossRefGoogle Scholar
  44. Soltis PS, Soltis DE (2009) The role of hybridization in plant speciation. Annu Rev Plant Biol 60:561–588CrossRefGoogle Scholar
  45. Stuart YE, Campbell TS, Hohenlohe PA, Reynolds RG, Revell LJ, Losos JB (2014) Rapid evolution of a native species following invasion by a congener. Science 346:463–466CrossRefGoogle Scholar
  46. Todesco M, Pascual MA, Owens GL, Ostevik KL, Moyers BT, Hübner S, Heredia SM, Hahn MA, Caseys C, Bock DG, Rieseberg LH (2016) Hybridization and extinction. Evol Appl 9:892–908CrossRefGoogle Scholar
  47. Torres-Carvajal O (2015) On the origin of South American populations of the common house gecko (Gekkonidae: Hemidactylus frenatus). NeoBiota 27:69–79CrossRefGoogle Scholar
  48. Torres-Carvajal O, Tapia W (2011) First record of the common house gecko Hemidactylus frenatus Schlegel, 1836 and distribution extension of Phyllodactylus reissii Peters, 1862 in the Galapagos. CheckList 7Google Scholar
  49. Torres-Carvajal O, Barnes CW, Pozo-Andrade MJ, Tapia W, Nicholls G (2014) Older than the islands: origin and diversification of Galapagos leaf-toed geckos (Phyllodactylidae: Phyllodactylus) by multiple colonizations. J Biogeogr 41:1883–1894CrossRefGoogle Scholar
  50. Torres-Carvajal O, Rodríguez-Guerra A, Chaves JA (2016) Present diversity of Galapagos leaf-toed geckos (Phyllodactylidae: Phyllodactylus) stems from three independent colonization events. Mol Phylogenet Evol 103:1–5CrossRefGoogle Scholar
  51. Tye A, Atkinson R, Carrión V (2007) Incrementa el número de plantas introducidas en Galápagos. In: Galapagos Report 2006-2007. Galapagos National Park Directorate, Governing Council of Galapagos, Charles Darwin Foundation, and Galapagos Conservancy, Puerto Ayora, GalapagosGoogle Scholar
  52. Vilà M, Espinar JL, Hejda M, Hulme PE, Jarošík V, Maron JL, Pergl J, Schaffner U, Sun Y, Pyšek P (2011) Ecological impacts of invasive alien plants: a meta-analysis of their effects on species, communities and ecosystems. Ecol Lett 14:702–708CrossRefGoogle Scholar
  53. Walsh SJ, Mena CF (2016) Interactions of social, terrestrial, and marine sub-systems in the Galapagos Islands, Ecuador. Proc Natl Acad Sci U S A 113:14536–14543CrossRefGoogle Scholar
  54. Wikelski M, Foufopoulos J, Vargas H, Snell H (2004) Galapagos birds and diseases: invasive pathogens as threats for island species. Ecol Soc 9:5CrossRefGoogle Scholar
  55. Zapata F, Martinetti M (2010) Optimizing marine transport of food products to Galapagos: advances in the implementation plan. In: Galapagos Report 2009-2010. Galapagos National Park Directorate, Governing Council of Galapagos, Charles Darwin Foundation, and Galapagos Conservancy, Puerto Ayora, GalapagosGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito USFQQuitoEcuador
  2. 2.Instituto de Investigaciones Biológicas y Ambientales BIÓSFERAQuitoEcuador

Personalised recommendations