Skip to main content

The Effect of Hessian Evaluations in the Global Optimization αBB Method

  • Conference paper
  • First Online:
Modeling, Simulation and Optimization of Complex Processes HPSC 2015

Abstract

We consider convex underestimators that are used in the global optimization αBB method and its variants. The method is based on augmenting the original nonconvex function by a relaxation term that is derived from an interval enclosure of the Hessian matrix. In this paper, we discuss the advantages of symbolic computation of the Hessian matrix. Symbolic computation often allows simplifications of the resulting expressions, which in turn means less conservative underestimators. We show by examples that even a small manipulation with the symbolic expressions, which can be processed automatically by computers, can have a large effect on the quality of underestimators. The purpose of this paper is also to turn attention of researchers to the possibility of symbolic differentiation (and its combination with automatic differentiation) and investigation of the most convenient way for interval evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adjiman, C.S., Androulakis, I.P., Floudas, C.A.: A global optimization method, αBB, for general twice-differentiabe constrained NLPs – II. Implementation and computational results. Comput. Chem. Eng. 22(9), 1159–1179 (1998)

    Article  Google Scholar 

  2. Adjiman, C.S., Dallwig, S., Floudas, C.A., Neumaier, A.: A global optimization method, αBB, for general twice-differentiable constrained NLPs – I. Theoretical advances. Comput. Chem. Eng. 22(9), 1137–1158 (1998)

    Article  Google Scholar 

  3. Androulakis, I.P., Maranas, C.D., Floudas, C.A.: αBB: a global optimization method for general constrained nonconvex problems. J. Glob. Optim. 7(4), 337–363 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  4. Beaumont, O.: Solving interval linear systems with linear programming techniques. Linear Algebra Appl. 281(1–3), 293–309 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. Floudas, C.A.: Deterministic global optimization. Theory, methods and applications. In: Nonconvex Optimization and its Applications, vol. 37. Kluwer, Dordrecht (2000)

    Google Scholar 

  6. Floudas, C.A., Gounaris, C.E.: A review of recent advances in global optimization. J. Glob. Optim. 45(1), 3–38 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Floudas, C.A., Pardalos, P.M. (eds.): Encyclopedia of Optimization, 2nd edn. Springer, New York (2009)

    MATH  Google Scholar 

  8. Floudas, C., Akrotirianakis, I., Caratzoulas, S., Meyer, C., Kallrath, J.: Global optimization in the 21st century: advances and challenges. Comput. Chem. Eng. 29(6), 1185–1202 (2005)

    Article  Google Scholar 

  9. Gounaris, C.E., Floudas, C.A.: Tight convex underestimators for \(\mathcal{C}^{2}\)-continuous problems. II: multivariate functions. J. Glob. Optim. 42(1), 69–89 (2008)

    MathSciNet  MATH  Google Scholar 

  10. Hansen, E.R.: Sharpness in interval computations. Reliab. Comput. 3(1), 17–29 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hansen, E.R., Walster, G.W.: Global Optimization Using Interval Analysis, 2nd edn. Marcel Dekker, New York (2004)

    MATH  Google Scholar 

  12. Hladík, M.: Bounds on eigenvalues of real and complex interval matrices. Appl. Math. Comput. 219(10), 5584–5591 (2013)

    MathSciNet  MATH  Google Scholar 

  13. Hladík, M.: On the efficient Gerschgorin inclusion usage in the global optimization αBB method. J. Glob. Optim. 61(2), 235–253 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hladík, M., Daney, D., Tsigaridas, E.: Bounds on real eigenvalues and singular values of interval matrices. SIAM J. Matrix Anal. Appl. 31(4), 2116–2129 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hladík, M., Daney, D., Tsigaridas, E.P.: A filtering method for the interval eigenvalue problem. Appl. Math. Comput. 217(12), 5236–5242 (2011)

    MathSciNet  MATH  Google Scholar 

  16. Li, J., Misener, R., Floudas, C.: Continuous-time modeling and global optimization approach for scheduling of crude oil operations. AIChE J. 58(1), 205–226 (2012)

    Article  Google Scholar 

  17. Miró, A., Pozo, C., Guillén-Gosálbez, G., Egea, J., Jiménez, L.: Deterministic global optimization algorithm based on outer approximation for the parameter estimation of nonlinear dynamic biological systems. BMC Bioinf. 13(1), 90 (2012)

    Article  Google Scholar 

  18. Mönnigmann, M.: Fast calculation of spectral bounds for hessian matrices on hyperrectangles. SIAM J. Matrix Anal. Appl. 32(4), 1351–1366 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Moore, R.E., Kearfott, R.B., Cloud, M.J.: Introduction to Interval Analysis. SIAM, Philadelphia (2009)

    Book  MATH  Google Scholar 

  20. Neumaier, A.: Interval Methods for Systems of Equations. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  21. Rump, S.M.: INTLAB – INTerval LABoratory. In: Csendes, T. (ed.) Developments in Reliable Computing, pp. 77–104. Kluwer Academic Publishers, Dordrecht (1999). http://www.ti3.tu-harburg.de/rump/

    Chapter  Google Scholar 

  22. Shiu, T.J., Wu, S.Y.: Relaxed cutting plane method with convexification for solving nonlinear semi-infinite programming problems. Comput. Optim. Appl. 53(1), 91–113 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Skjäl, A., Westerlund, T.: New methods for calculating αBB-type underestimators. J. Glob. Optim. 58(3), 411–427 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Skjäl, A., Westerlund, T., Misener, R., Floudas, C.A.: A generalization of the classical αBB convex underestimation via diagonal and nondiagonal quadratic terms. J. Optim. Theory Appl. 154(2), 462–490 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Stein, O.: How to solve a semi-infinite optimization problem. Eur. J. Oper. Res. 223(2), 312–320 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author was supported by the Czech Science Foundation Grant P402-13-10660S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milan Hladík .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Hladík, M. (2017). The Effect of Hessian Evaluations in the Global Optimization αBB Method. In: Bock, H., Phu, H., Rannacher, R., Schlöder, J. (eds) Modeling, Simulation and Optimization of Complex Processes HPSC 2015 . Springer, Cham. https://doi.org/10.1007/978-3-319-67168-0_6

Download citation

Publish with us

Policies and ethics