Skip to main content

High Performance Computing for Cognition-Guided Cardiac Surgery: Soft Tissue Simulation for Mitral Valve Reconstruction in Knowledge-Based Surgery Assistance

  • Conference paper
  • First Online:
  • 634 Accesses

Abstract

Medical simulations play an increasingly important role in today’s clinical and surgical treatment processes. The scope of this work is the support of the surgical operation of a mitral valve reconstruction (MVR) by means of biomechanical simulations. Based on numerical simulation, the natural anatomical setting, the ring implantation and the valve closure are modelled and efficiently computed in order to provide surgeons during the operation with additional morphological and functional information. Our simulation is based on the Finite Element Method (FEM) and implemented using the open-source C++ FEM software HiFlow3. Integrating patient data and surgical expert knowledge, and making efficient use of High-Performance Computing (HPC) methods allows for obtaining valuable simulation results for surgery assistance in adequate times. In this work, we focus on the intelligent setup of the biomechanical model and the flexible interfaces of the HPC-based implementation of the resulting MVR simulation, thereby aiming at a cognition-guided, patient-specific integration into systems for surgery assistance.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Anzt, H., Augustin, W., Baumann, M., et al.: HiFlow3 – a hardware-aware parallel finite element package. In: Tools for High Performance Computing, vol. 2011, pp. 139–151 (2012)

    Google Scholar 

  2. Bathe, K.-J.: Finite Element Procedures. Prentice Hall, New Jersey (1996)

    MATH  Google Scholar 

  3. Braess, D.: Finite Elemente. Springer, Berlin/Heidelberg (2007)

    MATH  Google Scholar 

  4. Carpentier, A., Chauvaud, S., Fabiani, J.N., et al.: Reconstructive surgery of mitral valve incompetence: ten-year appraisal. J. Thorac. Cardiovasc. Surg. 79, 338–348 (1980)

    Google Scholar 

  5. Choi, A., Rim, Y., Mun, J.S., Kim, H.: A novel finite element-based patient-specific mitral valve repair: virtual ring annuloplasty. J. Bio-Med. Mater. Eng. 24, 341–347 (2014)

    Google Scholar 

  6. Ciarlet, P.G.: Mathematical Elasticity. North Holland, Amsterdam (1988)

    MATH  Google Scholar 

  7. Engelhardt, S., Lichtenberg, N., Al-Maisary, S., et al.: Towards automatic assessment of the mitral valve coaptation zone from 4D ultrasound. In: Functional Imaging and Modelling of the Heart, Maastricht (2015)

    Book  Google Scholar 

  8. Jokinen, J., Hippelaeinen, M.J., Pitkaenen, O.A., Hartikainen, J.E.: Mitral valve replacement versus repair: propensity-adjusted survival and quality-of-life analysis. J. Thorac. Surg. 84, 451–458 (2007)

    Article  Google Scholar 

  9. Maisano, F., Skantharaja, R., Denti, P., et al.: Mitral annuloplasty. Oxf. J. Multimed. Manual Cardiothorac. Surg. 0918 (2009)

    Google Scholar 

  10. Mansi, T., Voigt, I., Georgescu, B., Zheng, X., et al.: An integrated framework for finite-element modeling of mitral valve biomechanics from medical images. J. Med. Image Anal. 16, 1330–1346 (2012)

    Article  Google Scholar 

  11. Mezger, J.: Simulation and animation of deformable bodies. Dissertation, University of Tuebingen, Germany (2008)

    Google Scholar 

  12. Morgan, A.E., Pantoja, J.L., Weinsaft, J., et al.: Finite element modeling of mitral valve repair. J. Biomech. Eng. 138(2), 021009 (2016)

    Article  Google Scholar 

  13. Owen, D.R.J., Peric, D.: Computational model for 3-D contact problems with friction based on the penalty method. J. Numer. Methods Eng. 35, 1289–1309 (1992)

    Article  MATH  Google Scholar 

  14. Pouch, A., Xu, C., Yushkevich, P.A., et al.: Semi-automated mitral valve morphometry and computational stress analysis using 3D ultrasound. J. Biomech. 45, 903–907 (2012)

    Article  Google Scholar 

  15. Prot, V., Skallerud, B.: Nonlinear solid finite element analysis of mitral valves with heterogeneous leaflet layers. J. Comput. Mech. 43, 353–368 (2009)

    Article  MATH  Google Scholar 

  16. Schoch, N., Engelhardt, S., Zimmermann, N., et al.: Integration of a biomechanical simulation for mitral valve reconstruction into a knowledge-based surgery assistance system. In: Proc. SPIE 9415, Medical Imaging 2015: Image-Guided Procedures, Robotic Interventions, and Modeling, 941502 (2015)

    Google Scholar 

  17. Schoch, N., Philipp, P., Weller, T., et al.: Cognitive tools pipeline for assistance of mitral valve surgery. In: Proc. SPIE 9786, Medical Imaging 2016: Image-Guided Procedures, Robotic Interventions, and Modeling, 978603 (2016)

    Google Scholar 

  18. Schoch, N., Kissler, F., Stoll, M., et al.: Comprehensive patient-specific information preprocessing for cardiac surgery simulations. Int. J. Comput. Assist. Radiol. Surg. 11(6), 1051–1059 (2016). Special Issue: IPCAI2016

    Google Scholar 

  19. Suwelack, S., Stoll, M., Schalck, S., Schoch, N., et al.: The medical simulation markup language – simplifying the biomechanical modeling workflow. J. Stud. Health Technol. Inform. 196, 394–400 (2014)

    Google Scholar 

  20. Votta, E., Caiani, E., Veronesi, F., et al.: Mitral valve finite-element modelling from ultrasound data: a pilot study for a new approach to understand mitral function and clinical scenarios. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 366, 3411 (2008)

    Google Scholar 

  21. Votta, E., Le, T.B., Stevanella, M., et al.: Toward patient-specific simulations of cardiac valves: state-of-the-art and future directions. J. Biomech. 46, 217–228 (2013)

    Article  Google Scholar 

  22. Wriggers, P.: Computational Contact Mechanics, 2nd edn. Springer, Berlin/Heidelberg (2006)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

This work was carried out with the support of the German Research Foundation (DFG) within the projects I03 and B01 of the Collaborative Research Center SFB/TRR 125 ‘Cognition-Guided Surgery’. We performed the computations on the bwUniCluster, funded by the Ministry of Science, Research and the Arts Baden-Wuerttemberg and the Universities of the State of Baden-Wuerttemberg, Germany, within the framework program bwHPC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Schoch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Schoch, N., Engelhardt, S., De Simone, R., Wolf, I., Heuveline, V. (2017). High Performance Computing for Cognition-Guided Cardiac Surgery: Soft Tissue Simulation for Mitral Valve Reconstruction in Knowledge-Based Surgery Assistance. In: Bock, H., Phu, H., Rannacher, R., Schlöder, J. (eds) Modeling, Simulation and Optimization of Complex Processes HPSC 2015 . Springer, Cham. https://doi.org/10.1007/978-3-319-67168-0_17

Download citation

Publish with us

Policies and ethics