Skip to main content

Aiming for Maximum Tracking Accuracy in Repetitive Control Systems

  • Conference paper
  • First Online:

Abstract

Feedback control systems can have reasonably good performance executing a desired trajectory, but only for frequencies up to the bandwidth of the control system. They never offer perfect tracking of an arbitrary desired trajectory. Repetitive control designs controllers to adjust the command to a feedback system aiming to converge to zero tracking error for any desired trajectory of a known period. It also aims to produce zero error in the presence of a periodic disturbance of known period. The ideal of zero tracking error is unusual in control and also challenging. This paper gives an overview of the methods preferred by the author to approach as closely as possible to this performance ideal.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Inoue, T., Nakano, M., Iwai, S.: High accuracy control of a proton synchrotron magnet power supply. In: Proceedings of the 8th World Congress of IFAC, vol. 20, pp. 216–221 (1981)

    Google Scholar 

  2. Middleton, R.H., Goodwin, G.C., Longman, R.W.: A method for improving the dynamic accuracy of a robot performing a repetitive task, University of Newcastle, Newcastle, Australia, Department of Electrical Engineering Technical Report EE8546 (1985). Also, Int. J. Robot. Res. 8, 67–74 (1989)

    Google Scholar 

  3. Tomizuka, M., Tsao, T.-C., Chew, K.K.: Analysis and synthesis of discrete time repetitive controllers. J. Dyn. Syst. Meas. Control 111, 353–358 (1989)

    Article  MATH  Google Scholar 

  4. Longman, R.W.: On the theory and design of linear repetitive control systems. Eur. J. Control Spec. Sect. Iterative Learn. Control 16(5), 447–496 (2010). Guest Editor Hyo-Sung Ahn

    Google Scholar 

  5. Panomruttanarug, B., Longman, R.W.: Repetitive controller design using optimization in the frequency domain. In: Proceedings of the 2004 AIAA/AAS Astrodynamics Specialist Conference, Providence, RI, August 2004

    Google Scholar 

  6. Åström, K., Hagander, P., Strenby, J.: Zeros of sampled systems. In: Proceedings of the 19th IEEE Conference on Decision and Control, pp. 1077–1081 (1980)

    Google Scholar 

  7. Panomruttanarug, B., Longman, R.W.: Designing optimized FIR repetitive controllers from noisy frequency response data. Adv. Astronaut. Sci. 127, 1723–1742 (2007)

    Google Scholar 

  8. Longman, R.W., Yeol, J.W., Ryu, Y.S.: Placing the repetitive controller inside or outside the feedback loop: simultaneously achieving the feedback and repetitive control objectives. Adv. Astronaut. Sci. 127, 1703–1722 (2007)

    Google Scholar 

  9. Steinbuch, M.: Repetitive control for systems with uncertain period-time. Automatica 38(12), 2103–2109 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Lo, C.-P., Longman, R.W.: Root locus analysis of higher order repetitive control. Adv. Astronaut. Sci. 120, 2021–2040 (2005)

    Google Scholar 

  11. Lo, C.-P., Longman, R.W.: Frequency response analysis of higher order repetitive control. Adv. Astronaut. Sci. 123, 1183–1202 (2006)

    Google Scholar 

  12. Guo, H.-J., Longman, R.W., Ishihara, T.: A design approach for insensitivity to disturbance period fluctuations using higher order repetitive control. In: Proceedings of the 19th World Congress of the International Federation of Automatic Control, Cape Town, South Africa, August 24–16, 2014

    Google Scholar 

  13. Yamada, M., Riadh, Z., Funahashi, Y.: Design of robust repetitive control system for multiple periods. In: Proceedings of the 39th IEEE Conference on Decision and Control, pp. 3739–3744 (2000)

    Google Scholar 

  14. Ahn, E.S., Longman, R.W., Kim, J.J.: Comparison of multiple-period and higher order repetitive control used to produce robustness to period fluctuations. Adv. Astronaut. Sci. 148, 179–202 (2013)

    Google Scholar 

  15. Ahn, E.S., Longman, R.W., Kim, J.J.: Evaluating the stability robustness to model errors of multiple-period repetitive control. Adv. Astronaut. Sci. 142, 2563–2580 (2012)

    Google Scholar 

  16. Prasitmeeboon, P., Longman, R.W.: Using quadratically constrained quadratic programming to design repetitive controllers: application to non-minimum phase systems. Adv. Astronaut. Sci. 156, 1647–1666 (2015)

    Google Scholar 

  17. Grant, M., Boyd, S.: Graph implementations for nonsmooth convex programs. In: Blondel, V., Boyd, S., Kimura, H. (eds.) Recent Advances in Learning and Control (a tribute to M. Vidyasagar). Lecture Notes in Control and Information Sciences, pp. 95–110. Springer, London (2008). http://stanford.edu/~boyd/graph_dcp.html

    Google Scholar 

  18. LeVoci, P., Longman, R.W.: Frequency domain prediction of final error due to noise in learning and repetitive control. Adv. Astronaut. Sci. 112, 1341–1359 (2002)

    Google Scholar 

  19. Yeol, J.W., Longman, R.W.: Time and frequency domain evaluation of settling time in repetitive control. In: Proceedings of the AIAA/AAS Astrodynamics Specialist Conference, Hawaii, August 2008

    Google Scholar 

  20. Seron, M.S., Braslavsky, J.H., Goodwin, G.C.: Fundamental Limitations in Filtering and Control. Springer, London (1997)

    Book  MATH  Google Scholar 

  21. Songchon, T., Longman, R.W.: On the waterbed effect in repetitive control using zero-phase filtering. Adv. Astronaut. Sci. 108, 1321–1340 (2002)

    Google Scholar 

  22. Phan, M.Q., Longman, R.W., Panomruttanarug, B., Lee, S.C.: Robustification of iterative learning control and repetitive control by averaging. Int. J. Control 86(5), 1–14 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Shi, Y., Longman, R.W., Phan, M.Q.: An algorithm for robustification of repetitive control to parameter uncertainties. Adv. Astronaut. Sci. 136, 1953–1966 (2010)

    Google Scholar 

  24. Longman, R.W.: Iterative learning control and repetitive control for engineering practice. Int. J. Control 73(10), 930–954 (2000). Special Issue on Iterative Learning Control

    Google Scholar 

  25. Kang, W., Longman, R.W.: The effect of interpolation on stability and performance in repetitive control. Adv. Astronaut. Sci. 123, 1163–1182 (2006)

    Google Scholar 

  26. Zhu, J., Longman, R.W.: Incorporating physical considerations in the design of repetitive controllers. Adv. Astronaut. Sci. 152, 2803–2822 (2014)

    Google Scholar 

  27. Panomruttanarug, B., Longman, R.W.: Frequency based optimal design of FIR zero-phase filters and compensators for robust repetitive control. Adv. Astronaut. Sci. 123, 219–238 (2006)

    Google Scholar 

  28. Bao, J., Longman, R.W.: Enhancements of repetitive control using specialized FIR zero-phase filter designs. Adv. Astronaut. Sci. 129, 1413–1432 (2008)

    Google Scholar 

  29. Longman, R.W., Xu, K., Panomruttanarug, B.: Designing learning control that is close to instability for improved parameter identification. In: Bock, H.G., Kostina, E., Phu, H.X., Rannacher, R. (eds.) Modeling, Simulation and Optimization of Complex Processes, pp. 359–370. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  30. Isik, M.C., Longman, R.W.: Explaining and evaluating the discrepancy between the intended and the actual cutoff frequency in repetitive control. Adv. Astronaut. Sci. 136, 1581–1598 (2010)

    Google Scholar 

  31. Shi, Y., Longman, R.W.: The influence on stability robustness of compromising on the zero tracking error requirement in repetitive control. J. Astronaut. Sci. 59(1–2), 453–470 (2014)

    Google Scholar 

  32. Shi, Y., Longman, R.W., Nagashima, M.: Small gain stability theory for matched basis function repetitive control. Acta Astronaut. 95, 260–271 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard W. Longman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Longman, R.W. (2017). Aiming for Maximum Tracking Accuracy in Repetitive Control Systems. In: Bock, H., Phu, H., Rannacher, R., Schlöder, J. (eds) Modeling, Simulation and Optimization of Complex Processes HPSC 2015 . Springer, Cham. https://doi.org/10.1007/978-3-319-67168-0_10

Download citation

Publish with us

Policies and ethics