Advertisement

Using Data Analytics for Continuous Improvement of CRM Processes: Case of Financial Institution

  • Pāvels GončarovsEmail author
  • Jānis GrabisEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 767)

Abstract

Data analytics capabilities integrated with Customer Relationship Management Systems play an important role to enable customer-centric sales activities at financial institutions. This paper reports a case study on developing a data mining model to identify the Next Best Offer (NBO) for selling financial products to bank’s customers. The case study emphasizes importance of collaboration among data scientists and business representatives in iterative refinement of the prediction models. It has been shown that the iterative refinement and combination of various modeling techniques lead to accuracy improvement by 30% and facilitates acceptance of the modeling results.

Keywords

Data analytics Next Best Offer Analytical CRM Data mining process Combination of association Classification and clustering 

References

  1. 1.
    Patel, B.N., Prajapati, S.G., Lakhtaria, K.I.: Bonfring Int. J. Data Min. Efficient classification of data using decision tree 2, 6 (2012)Google Scholar
  2. 2.
    Markarian, J., Brobst, S., Bedell, J.: Critical success factors deploying pervasive BI. Informatica Teradata MicroStrategy 1007, 3 (2007). EB-5408Google Scholar
  3. 3.
    Pegasystems Inc.: Next-Best-Action Marketing: A Customer Centric Approach (2012)Google Scholar
  4. 4.
    Wang, K., Zhao, Q., Lu, J., Yu, T.: K-profiles: a nonlinear clustering method for pattern detection in high dimensional data. Biomed. Res. Int. 2015, 918954 (2015)Google Scholar
  5. 5.
    Jiang, D., Tang, C., Zhang, A.: Cluster analysis for gene expression data: a survey. IEEE Trans. Knowl. Data Eng. 16(11), 1370–1386 (2004)CrossRefGoogle Scholar
  6. 6.
    Hastie, T., Tibshirani, R., Friedman, J.H.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer, New York (2009)CrossRefzbMATHGoogle Scholar
  7. 7.
    Digital Trends in the Financial Services and Insurance Sector (2016)Google Scholar
  8. 8.
    Sanjiv, K.R.: Next Best Action: The One-To-One Future. www.wipro.com
  9. 9.
    Tanner Jr., J.F., Ahearne, M., Leigh, T.W., Mason, C.H., Moncrief, W.C.: CRM in sales-intensive organizations a review and future directions. J. Pers. Sell. Sales Manag. 25, 169–180 (2005)Google Scholar
  10. 10.
    Najafabadi, M.M., Villanustre, F., Khoshgoftaar, T.M., Seliya, N., Wald, R., Muharemagic, E.: Deep learning applications and challenges in big data analytics. J. Big Data 2(1), 1–21 (2015)CrossRefGoogle Scholar
  11. 11.
    Chapman, P., Clinton, J., Kerber, R., Khabaza, T., Reinartz, T., Shearer, C., Wirth, R.: CRISPDM 1.0 step-by-step data mining guide. Technical report, CRISP-DM (2000)Google Scholar
  12. 12.
    Sivarajah, U., Kamal, M.M., Irani, Z., Weerakkody, V.: Critical analysis of Big Data challenges and analytical methods. J. Bus. Res. 70, 263–286 (2016)CrossRefGoogle Scholar
  13. 13.
    Croft, J.: Advanced next best offer marketing using predictive analytics. Appl. Mark. Anal. 1(4), 363–376 (2014). AUTUMN/FALL 2015Google Scholar
  14. 14.
    Sasikala, D., Kalaiselvi, S.: Data Mining for Business Intelligence in CRM System. Sri Vasavi College, (sfw), Bharathiar University, Erode-638 316, India (2016)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Information Technology InstituteRiga Technical UniversityRigaLatvia

Personalised recommendations