Advertisement

Data Science Techniques for Law and Justice: Current State of Research and Open Problems

  • Alexandre QuemyEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 767)

Abstract

By comparing the state of research in Legal Analysis to the needs of legal agents, we extract four fundamental problems and discuss how they are covered by the current best approaches. In particular, we review the recent statistical models, relying on Machine Learning coupled to Natural Language Processing techniques, and the Abstract Argumentation applied to the legal domain before giving some new perspectives of research.

Keywords

Legal analysis Abstract Argumentation Case-Based Reasoning 

References

  1. 1.
    Aamodt, A., Plaza, E.: Case-based reasoning: foundational issues, methodological variations, and system approaches. AI Commun. 7(1), 39–59 (1994)Google Scholar
  2. 2.
    Aletras, N., Tsarapatsanis, D., Preoţiuc-Pietro, D., Lampos, V.: Predicting judicial decisions of the European court of human rights: a natural language processing perspective. PeerJ Comput. Sci. 2, 93–112 (2016)CrossRefGoogle Scholar
  3. 3.
    Aleven, V., Ashley, K.D.: Evaluating a learning environment for case-based argumentation skills. In: Proceedings of International Conference on Artificial Intelligence and Law (ICAIL), pp. 170–179 (1997)Google Scholar
  4. 4.
    Amgoud, L.: A unified setting for inference and decision: an argumentation-based approach. In: Proceedings of International Conference on Uncertainty in Artificial Intelligence (UAI), pp. 26–33 (2005)Google Scholar
  5. 5.
    Athakravi, D., Satoh, K., Law, M., Broda, K., Russo, A.: Automated inference of rules with exception from past legal cases using ASP. In: Calimeri, F., Ianni, G., Truszczynski, M. (eds.) LPNMR 2015. LNCS (LNAI), vol. 9345, pp. 83–96. Springer, Cham (2015). doi: 10.1007/978-3-319-23264-5_8 CrossRefGoogle Scholar
  6. 6.
    Baroni, P., Romano, M., Toni, F., Aurisicchio, M., Bertanza, G.: Automatic evaluation of design alternatives with quantitative argumentation. Argum. Comput. 6(1), 24–49 (2015)CrossRefzbMATHGoogle Scholar
  7. 7.
    Barringer, H., Gabbay, D., Woods, J.: Temporal dynamics of support and attack networks: from argumentation to zoology. In: Hutter, D., Stephan, W. (eds.) Mechanizing Mathematical Reasoning. LNCS, vol. 2605, pp. 59–98. Springer, Heidelberg (2005). doi: 10.1007/978-3-540-32254-2_5 CrossRefGoogle Scholar
  8. 8.
    Bench-Capon, T.J.: Representation of case law as an argumentation framework. In: Proceedings of International Conference on Legal Knowledge and Information Systems (JURIX), pp. 103–112 (2002)Google Scholar
  9. 9.
    Bench-Capon, T.J.: Try to see it my way: modelling persuasion in legal discourse. Artif. Intell. Law 11(4), 271–287 (2003)CrossRefGoogle Scholar
  10. 10.
    Cayrol, C., Lagasquie-Schiex, M.C.: On the acceptability of arguments in bipolar argumentation frameworks. In: Godo, L. (ed.) ECSQARU 2005. LNCS (LNAI), vol. 3571, pp. 378–389. Springer, Heidelberg (2005). doi: 10.1007/11518655_33 CrossRefGoogle Scholar
  11. 11.
    Delgado, P.: Survey of casebased reasoning as applied to the legal domain (2007, unpublished)Google Scholar
  12. 12.
    Delobelle, J., Haret, A., Konieczny, S., Mailly, J., Rossit, J., Woltran, S.: Merging of abstract argumentation frameworks. In: Proceedings of International Conference on Principles of Knowledge Representation and Reasoning (KR), pp. 33–42 (2016)Google Scholar
  13. 13.
    Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artif. Intell. 77, 321–357 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Dung, P.M., Kowalski, R.A., Toni, F.: Dialectic proof procedures for assumption-based, admissible argumentation. Artif. Intell. 170(2), 114–159 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Dung, P.M., Thang, P.M.: Towards an argument-based model of legal doctrines in common law of contracts. In: Proceedings of International Conference on Computational Logic in Multi-Agent Systems (CLIMA), pp. 111–126 (2008)Google Scholar
  16. 16.
    Dung, P.M., Thang, P.M.: Towards (probabilistic) argumentation for jury-based dispute resolution. In: Proceedings of International Conference on Computational Models of Argument (COMMA), pp. 171–182 (2010)Google Scholar
  17. 17.
    Frydman, B.: Le sens des lois: histoire de l’interprétation et de la raison juridique. Penser le droit, Bruylant, Bruxelles (2005)Google Scholar
  18. 18.
    Geurts, P., Ernst, D., Wehenkel, L.: Extremely randomized trees. Mach. Learn. 63(1), 3–42 (2006)CrossRefzbMATHGoogle Scholar
  19. 19.
    Guimerà, R., Sales-Pardo, M.: Justice blocks and predictability of U.S. supreme court votes. PLOS ONE 6(11), 1–8 (2011)CrossRefGoogle Scholar
  20. 20.
    Hadoux, E., Beynier, A., Maudet, N., Weng, P., Hunter, A.: Optimization of probabilistic argumentation with markov decision models. In: Proceedings of International Joint Conference on Artificial Intelligence (IJCAI), pp. 2004–2010 (2015)Google Scholar
  21. 21.
    Hadoux, E., Beynier, A., Weng, P.: Sequential decision-making under non-stationary environments via sequential change-point detection. In: Workshop on Learning over Multiple Contexts (LMCE) at ECML-PKDD (2014)Google Scholar
  22. 22.
    Hambleton, R.: Fundamentals of Item Response Theory. Measurement Methods for the Social Science. SAGE Publications, Newbury Park (1991)Google Scholar
  23. 23.
    Islam, M.R., Hossain, K., Krishnan, S., Ramakrishnan, N.: Inferring multi-dimensional ideal points for US supreme court justices. In: Proceedings of International Conference on Artificial Intelligence (AAAI), pp. 4–12 (2016)Google Scholar
  24. 24.
    Jøsang, A.: Subjective Logic: A Formalism for Reasoning Under Uncertainty. Artificial Intelligence: Foundations, Theory, and Algorithms. Springer, Switzerland (2016)CrossRefzbMATHGoogle Scholar
  25. 25.
    Kannai, R., Schild, U.J., Zeleznikow, J.: There is more to legal reasoning with analogies than case based reasoning, but what? In: Dershowitz, N., Nissan, E. (eds.) Language, Culture, Computation. Computing of the Humanities, Law, and Narratives. LNCS, vol. 8002, pp. 440–451. Springer, Heidelberg (2014). doi: 10.1007/978-3-642-45324-3_15 CrossRefGoogle Scholar
  26. 26.
    Katz, D.M., Bommarito, M.J.: Fin(legal)tech - law’s future from finance’s past (talk) (2017). https://speakerdeck.com/danielkatz/fin-legal-tech-laws-future-from-finances-past-professors-daniel-martin-katz-plus-michael-j-bommarito. Accessed 21 Mar 2017
  27. 27.
    Katz, D.M., Bommarito, M.J., Blackman, J.: Predicting the behavior of the supreme court of the united states: a general approach. SSRN Electron. J. (2014)Google Scholar
  28. 28.
    Kowalski, A.: Case-based reasoning and the deep structure approach to knowledge representation. In: Proceedings of International Conference on Artificial Intelligence and Law (ICAIL), pp. 21–30 (1991)Google Scholar
  29. 29.
    Kowalski, R.A., Toni, F.: Abstract argumentation. Artif. Intell. Law 4(3), 275–296 (1996)CrossRefGoogle Scholar
  30. 30.
    Lauderdale, B.E., Clark, T.S.: Scaling politically meaningful dimensions using texts and votes. Am. J. Polit. Sci. 58(3), 754–771 (2014)CrossRefGoogle Scholar
  31. 31.
    Leite, J., Martins, J.: Social abstract argumentation. In: Proceedings of International Joint Conference on Artificial Intelligence (IJCAI), pp. 2287–2292 (2011)Google Scholar
  32. 32.
    Mailly, J.: Dynamic of argumentation frameworks. In: Proceedings of International Joint Conference on Artificial Intelligence (IJCAI), pp. 3233–3234 (2013)Google Scholar
  33. 33.
    Martin, A.D., Quinn, K.M., Epstein, L.: The median justice on the united states supreme court. N.C. Law Rev. 83, 1275–1322 (2004)Google Scholar
  34. 34.
    Martin, A.D., Quinn, K.M., Kim, P.T., Ruger, T.W.: Competing approaches to predicting supreme court decision making. Perspect. Polit. 2, 761–767 (2004)CrossRefGoogle Scholar
  35. 35.
    Modgil, S., Faci, N., Meneguzzi, F., Oren, N., Miles, S., Luck, M.: A framework for monitoring agent-based normative systems. In: Proceedings of International Conference on Autonomous Agents and Multiagent Systems (AAMAS), pp. 153–160 (2009)Google Scholar
  36. 36.
    Nirn, O.: An Argumentation Framework Supporting Evidential Reasoning with Applications to Contract Monitoring. Ph.D. thesis, University of Aberdeen (2007)Google Scholar
  37. 37.
    Ontañón, S., Plaza, E.: An argumentation-based framework for deliberation in multi-agent systems. In: Rahwan, I., Parsons, S., Reed, C. (eds.) ArgMAS 2007. LNCS (LNAI), vol. 4946, pp. 178–196. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-78915-4_12 CrossRefGoogle Scholar
  38. 38.
    Quinn, K.M., Martin, A.D.: Dynamic ideal point estimation via markov chain Monte Carlo for the U.S. supreme court, 1953–1999. Polit. Anal. 10(2), 134–153 (2002)CrossRefGoogle Scholar
  39. 39.
    Quinn, K.M., Park, J.H., Martin, A.D.: Improving judicial ideal point estimates with a more realistic model of opinion content (2006, unpublished)Google Scholar
  40. 40.
    Rago, A., Toni, F., Aurisicchio, M., Baroni, P.: Discontinuity-free decision support with quantitative argumentation debates. In: Proceedings of International Conference on Principles of Knowledge Representation and Reasoning (KR), pp. 63–73 (2016)Google Scholar
  41. 41.
    Rissland, E.L.: AI and similarity. IEEE Intell. Syst. 21(3), 39–49 (2006)CrossRefGoogle Scholar
  42. 42.
    Ruger, T.W., Kim, P.T., Martin, A.D., Quinn, K.M.: The supreme court forecasting project: legal and political science approaches to predicting supreme court decisionmaking. Columbia Law Rev. 104(4), 1150–1210 (2004)CrossRefGoogle Scholar
  43. 43.
    Segal, J.A., Cover, A.D.: Ideological values and the votes of U.S. supreme court justices. Am. Polit. Sci. Rev. 83(2), 557–565 (1989)CrossRefGoogle Scholar
  44. 44.
    Segal, J.A., Epstein, L., Cameron, C.M., Spaeth, H.J.: Ideological values and the votes of U.S. supreme court justices revisited. J. Polit. 57(3), 812–823 (1995)CrossRefGoogle Scholar
  45. 45.
    Sim, Y., Routledge, B.R., Smith, N.A.: The utility of text: the case of amicus briefs and the supreme court. Comput. Res. Repos. (2014)Google Scholar
  46. 46.
    Spitzer, M.L., Cohen, L.: Solving the chevron puzzle. J. Law Contemp. Probl. 57, 65–110 (1994)CrossRefGoogle Scholar
  47. 47.
    Sunstein, C.R.: How law constructs preferences. Georget. Law J. 86, 2637–2652 (1998)Google Scholar
  48. 48.
    Tolosi, L., Lengauer, T.: Classification with correlated features: unreliability of feature ranking and solutions. Bioinformatics 27(14), 1986–1994 (2011)CrossRefGoogle Scholar
  49. 49.
    Troper, M.: La théorie du droit, le droit, l’état. In: Léviathan. Presses universitaires de France (2001)Google Scholar
  50. 50.
    Čyras, K., Satoh, K., Toni, F.: Abstract argumentation for case-based reasoning. In: Proceedings of International Conference on Principles of Knowledge Representation and Reasoning (KR), pp. 549–552 (2016)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.IBM Poland Software LabCracowPoland
  2. 2.Faculty of ComputingPoznań University of TechnologyPoznańPoland

Personalised recommendations