Fusion of Clinical Data: A Case Study to Predict the Type of Treatment of Bone Fractures

  • Anam HaqEmail author
  • Szymon Wilk
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 767)


Clinical data is characterized not only by its constantly increasing volume but also by its diversity. Information collected in clinical information systems such as electronic health records is highly heterogeneous and it includes structured laboratory and examination reports, unstructured clinical notes, images, and more often genetic data. This heterogeneity poses a significant challenge when constructing diagnostic and therapeutic decision models that should use data from all available sources to provide a comprehensive support. A possible response to this challenge is offered by the concept of data fusion and associated techniques. In this paper, we briefly describe the foundations of data fusion and present its application in a case study aimed at building a decision model to predict the type of treatment for patients with bone fractures. Specifically, the model should distinguish between patients who should undergo a surgery and those who should be treated non-surgically.


Clinical data Data fusion Prediction models Decision support 



The second author would like to acknowledge support by the Polish National Science Center under Grant No. DEC-2013/11/B/ST6/00963.


  1. 1.
    Mitchell, H.B.: Data Fusion: Concepts and Ideas. Springer, Heidelberg (2014). doi: 10.1007/978-3-642-27222-6 zbMATHGoogle Scholar
  2. 2.
    Lahat, D., Adali, T., Jutten, C.: Multimodal data fusion: an overview of methods, challenges, and prospects. Proc. IEEE 103(9), 1449–1477 (2015). doi: 10.1109/JPROC.2015.2460697 CrossRefGoogle Scholar
  3. 3.
    Castebedo, F.: A review of data fusion techniques. Sci. World J. (2013). doi: 10.1155/2013/704504
  4. 4.
    Rohlfing, T., Pfefferbaum, A., Sullivan, E.V., Maurer, C.R.: Information fusion in biomedical image analysis: combination of data vs. combination of interpretations. In: Christensen, G.E., Sonka, M. (eds.) IPMI 2005. LNCS, vol. 3565, pp. 150–161. Springer, Heidelberg (2005). doi: 10.1007/11505730_13 CrossRefGoogle Scholar
  5. 5.
    Ponti Jr., M.P: Combining classifiers: from the creation of ensembles to the decision fusion. In: 24th SIBGRAPI Conference on Graphics, Patterns and Images Tutorials (2011)Google Scholar
  6. 6.
    Lee, G., Madabhushi, A.: A knowledge representation framework for integration, classification of multi-scale imaging and non-imaging data: preliminary results in predicting prostate cancer recurrence by fusing mass spectrometry and histology. In: International Symposium on Biomedical Imaging: From Nano to Macro. IEEE (2009)Google Scholar
  7. 7.
    Twiss, T.: Nonoperative treatment of proximal humerus fractures. In: Crosby, L.A., Neviaser, R.J. (eds.) Proximal Humerus Fractures. LNCS, pp. 23–41. Springer, Cham (2015). doi: 10.1007/978-3-319-08951-5_2 Google Scholar
  8. 8.
    Lanckriet, G., Deng, M., Cristianini, N., Jordan, M., Noble, W.: Kernel-based data fusion and its application to protein function prediction in yeast. In: Proceedings of Pacific Symposium on Biocomputing (2004)Google Scholar
  9. 9.
    Kourou, K., Exarchos, T.P., Exarchos, K.P., Karamouzis, M.V., Fotiadis, D.I.: Machine learning applications in cancer prognosis and prediction. Comput. Struct. Biotechnol. J. 13, 8–17 (2015). doi: 10.1109/SIBGRAPI-T.2011.9 CrossRefGoogle Scholar
  10. 10.
    Jesneck, J., Nolte, L., Baker, J., Floyd, C., Lo, J.: Optimized approach to decision fusion of heterogeneous data for breast cancer diagnosis. Med. Phys. 33, 2945–2954 (2006). doi: 10.1118/1.2208934 CrossRefGoogle Scholar
  11. 11.
    Zorluoglu, G.M.: Diagnosis of breast cancer using ensemble of data mining classification methods. Int. J. Bioinform Biomed. Eng. 1(3), 318–322 (2015). doi: 10.5829/idosi.wasj.2014.29.dmsct.4
  12. 12.
    Hossain, M., Neelapala, V., Andrew, J.G.: Results of non-operative treatment following hip fracture compared to surgical intervention. Int. J. Care Inj. 40, 418–421 (2008)CrossRefGoogle Scholar
  13. 13.
    Myint, S., Khaing, A.S., Tun, H.M.: Detecting leg bone fracture in x-ray images. Int. J. Sci. Technol. Res. 5, 140–144 (2016)Google Scholar
  14. 14.
    Wilk, S., Stefanowski, J., Wojciechowski, S., Farion, K.J., Michalowski, W.: Application of preprocessing methods to imbalanced clinical data: an experimental study. In: Piętka, E., Badura, P., Kawa, J., Wieclawek, W. (eds.) Information Technologies in Medicine. AISC, vol. 471, pp. 503–515. Springer, Cham (2016). doi: 10.1007/978-3-319-39796-2_41 Google Scholar
  15. 15.
    Kubat, M., Matwin, S.: Addresing the curse of imbalanced training sets: one-side selection. In: Proceedings of the 14th International Conference, ICML 1997, pp. 179–186 (1997)Google Scholar
  16. 16.
    Tiwari, P., Viswanath, S., Lee, G., Madabhushi, A.: Multi-model data fusion schemes for integrated classification of imaging and non-imaging biomedical data. In: International Symposium on Biomedical Imaging: From Nano to Macro. IEEE (2011). doi: 10.1109/ISBI.2011.5872379

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Poznan University of TechnologyPoznanPoland

Personalised recommendations