Advertisement

Towards a Multi-way Similarity Join Operator

  • Mikhail GalkinEmail author
  • Maria-Esther Vidal
  • Sören Auer
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 767)

Abstract

Increasing volumes of data consumed and managed by enterprises demand effective and efficient data integration approaches. Additionally, the amount and variety of data sources impose further challenges for query engines. However, the majority of existing query engines rely on binary join-based query planners and execution methods with complexity that depends on the number of involved data sources. Moreover, traditional binary join operators are not able to distinguish between similar and different tuples, treating every incoming tuple as an independent object. Thus, if tuples are represented differently but refer to the same real-world entity, they are still considered as non-related objects. We propose MSimJoin, an approach towards a multi-way similarity join operator. MSimJoin accepts more than two inputs and is able to identify duplicates that correspond to similar entities from incoming tuples using Semantic Web technologies. Therefore, MSimJoin allows for the reduction of both the height of tree query plans and duplicated results.

Keywords

Semantic data management Semantic Web Join operators 

References

  1. 1.
    Acosta, M., Vidal, M.-E.: Networks of linked data eddies: an adaptive web query processing engine for RDF data. In: Arenas, M., et al. (eds.) ISWC 2015. LNCS, vol. 9366, pp. 111–127. Springer, Cham (2015). doi: 10.1007/978-3-319-25007-6_7 CrossRefGoogle Scholar
  2. 2.
    Acosta, M., Vidal, M.-E., Lampo, T., Castillo, J., Ruckhaus, E.: ANAPSID: an adaptive query processing engine for sparql endpoints. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011. LNCS, vol. 7031, pp. 18–34. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-25073-6_2 CrossRefGoogle Scholar
  3. 3.
    Buil-Aranda, C., Arenas, M., Corcho, O., Polleres, A.: Federating queries in SPARQL1.1: syntax, semantics and evaluation. Web Semant. Sci. Serv. Agents World Wide Web 18, 1–17 (2013)CrossRefGoogle Scholar
  4. 4.
    Feng, J., Wang, J., Li, G.: Trie-join: a trie-based method for efficient string similarity joins. VLDB J. 21(4), 437–461 (2012)CrossRefGoogle Scholar
  5. 5.
    Fernández, J.D., Llaves, A., Corcho, O.: Efficient RDF interchange (ERI) format for RDF data streams. In: Mika, P., et al. (eds.) ISWC 2014. LNCS, vol. 8797, pp. 244–259. Springer, Cham (2014). doi: 10.1007/978-3-319-11915-1_16 Google Scholar
  6. 6.
    Li, G., Deng, D., Wang, J., Feng, J.: Pass-join: a partition-based method for similarity joins. PVLDB 5(3), 253–264 (2011)Google Scholar
  7. 7.
    Mann, W., Augsten, N., Bouros, P.: An empirical evaluation of set similarity join techniques. PVLDB 9(9), 636–647 (2016)Google Scholar
  8. 8.
    Morales, C., Collarana, D., Vidal, M.-E., Auer, S.: MateTee: a semantic similarity metric based on translation embeddings for knowledge graphs. In: Cabot, J., Virgilio, R., Torlone, R. (eds.) ICWE 2017. LNCS, vol. 10360, pp. 246–263. Springer, Cham (2017). doi: 10.1007/978-3-319-60131-1_14 CrossRefGoogle Scholar
  9. 9.
    Ribeiro, L.A., Cuzzocrea, A., Bezerra, K.A.A., Nascimento, B.H.B.: Incorporating clustering into set similarity join algorithms: the SjClust framework. In: Hartmann, S., Ma, H. (eds.) DEXA 2016. LNCS, vol. 9827, pp. 185–204. Springer, Cham (2016). doi: 10.1007/978-3-319-44403-1_12 CrossRefGoogle Scholar
  10. 10.
    Schmachtenberg, M., Bizer, C., Paulheim, H.: Adoption of the linked data best practices in different topical domains. In: Mika, P., et al. (eds.) ISWC 2014. LNCS, vol. 8796, pp. 245–260. Springer, Cham (2014). doi: 10.1007/978-3-319-11964-9_16 Google Scholar
  11. 11.
    Schwarte, A., Haase, P., Hose, K., Schenkel, R., Schmidt, M.: FedX: optimization techniques for federated query processing on linked data. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011. LNCS, vol. 7031, pp. 601–616. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-25073-6_38 CrossRefGoogle Scholar
  12. 12.
    Shang, Z., Liu, Y., Li, G., Feng, J.: K-join: knowledge-aware similarity join. IEEE Trans. Knowl. Data Eng. 28(12), 3293–3308 (2016)CrossRefGoogle Scholar
  13. 13.
    Traverso, I., Vidal, M.-E., Kämpgen, B., Sure-Vetter, Y.: Gades: a graph-based semantic similarity measure. In: SEMANTiCS, pp. 101–104. ACM (2016)Google Scholar
  14. 14.
    Verborgh, R., Sande, M.V., Hartig, O., Herwegen, J.V., Vocht, L.D., Meester, B.D., Haesendonck, G., Colpaert, P.: Triple pattern fragments: a low-cost knowledge graph interface for the web. J. Web Sem. 37–38, 184–206 (2016)CrossRefGoogle Scholar
  15. 15.
    Vidal, M.-E., Castillo, S., Acosta, M., Montoya, G., Palma, G.: On the selection of SPARQL endpoints to efficiently execute federated SPARQL queries. In: Hameurlain, A., Küng, J., Wagner, R. (eds.) Transactions on Large-Scale Data- and Knowledge-Centered Systems XXV. LNCS, vol. 9620, pp. 109–149. Springer, Heidelberg (2016). doi: 10.1007/978-3-662-49534-6_4 CrossRefGoogle Scholar
  16. 16.
    Wandelt, S., Deng, D., Gerdjikov, S., Mishra, S., Mitankin, P., Patil, M., Siragusa, E., Tiskin, A., Wang, W., Wang, J., Leser, U.: State-of-the-art in string similarity search and join. SIGMOD Rec. 43(1), 64–76 (2014)CrossRefGoogle Scholar
  17. 17.
    Wang, Y., Wang, H., Li, J., Gao, H.: Efficient graph similarity join for information integration on graphs. Front. Comput. Sci. 10(2), 317–329 (2016)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Mikhail Galkin
    • 1
    • 2
    • 3
    Email author
  • Maria-Esther Vidal
    • 2
  • Sören Auer
    • 1
    • 2
  1. 1.Enterprise Information Systems (EIS)University of BonnBonnGermany
  2. 2.Fraunhofer Institute for Intelligent Analysis and Information Systems (IAIS)Sankt AugustinGermany
  3. 3.ITMO UniversitySaint PetersburgRussia

Personalised recommendations