Skip to main content

Application: Nitrate Reduction Processes

  • Chapter
  • First Online:
OpenGeoSys Tutorial

Part of the book series: SpringerBriefs in Earth System Sciences ((BRIEFSEARTHSYST))

  • 595 Accesses

Abstract

The coupled reactive transport code (“OGS#IPhreeqc”) is applied to a pyrite-driven denitrification of nitrate-contaminated groundwater scenario. This nitrate reactive transport model is a simplification of the model involving both autotrophic and heterotrophic denitrification processes based on results from a field study in the Hessian Ried, Germany Kludt et al., (2016). For the interested reader, more detail information can be found in Jang et al., (2017).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • C. Kludt, F.-A. Weber, A. Bergmann, K. Knöller, G. Berthold, C. Schüth. Identifizierung der nitratabbauprozesse und prognose des nitratabbaupotenzials in den sedimenten des hessischen rieds. Grundwasser, 21(3) 227–241 Sep 2016 ISSN 1432-1165, https://doi.org/10.1007/s00767-015-0317-5

  • E. Jang, W. He, H. Savoy, P. Dietrich, O. Kolditz, Y. Rubin, C. Schüth, T. Kalbacher, Identifying the influential aquifer heterogeneity factor on nitrate reduction processes by numerical simulation. Adv. in Water Resour. 99, 38–52 (2017), https://doi.org/10.1016/j.advwatres.2016.11.007

  • A. M. Fan , V. E. Steinberg, Health implications of nitrate and nitrite in drinking water: An update on methemoglobinemia occurrence and reproductive and developmental toxicity. Regul. Toxicol. Pharmacol. 23(1), 35 – 43 (1996). ISSN 0273-2300, http://dx.doi.org/10.1006/rtph.1996.0006

  • A. J. P. Smolders, E. C. H. E. T. Lucassen, R. Bobbink, J. G. M. Roelofs, L. P. M. Lamers, How nitrate leaching from agricultural lands provokes phosphate eutrophication in groundwater fed wetlands: the sulphur bridge. B.geochem. 98(1) 1–7, Apr 2010. ISSN 1573-515X, https://doi.org/10.1007/s10533-009-9387-8

  • S. F. Korom, Natural denitrification in the saturated zone: A review. Water Resour. Res. 28(6), 1657–1668 (1992). ISSN 1944-7973, http://doi.org/10.1029/92WR00252

  • M. O. Rivett, S. R. Buss, P. Morgan, J. W. N. Smith, C. D. Bemment, Nitrate attenuation in groundwater: A review of biogeochemical controlling processes. Water Res. 42(16), 4215 – 4232 (2008). ISSN 0043-1354, http://www.sciencedirect.com/science/article/pii/S0043135408002984

  • S.J. Bailey, A. Vanhatalo, P.G. Winyard, A.M. Jones, The nitrate-nitrite-nitric oxide pathway: Its role in human exercise physiology. European Journal of Sport Science 12(4), 309–320 (2012), http://doi.org/10.1080/17461391.2011.635705

  • C. Torrentó, J. Cama, J. Urmeneta, N. Otero, A. Soler, Denitrification of groundwater with pyrite and thiobacillus denitrificans. Chem. Geol. 278(1), 80 – 91 (2010). ISSN 0009-2541, http://www.sciencedirect.com/science/article/pii/S0009254110003165

  • Y.-C. Zhang, H. Prommer, H.P. Broers, C.P. Slomp, J. Greskoviak, B. Van der Grift, P. Van Cappellen, Model-based integration and analysis of biogeochemical and isotopic dynamics in a nitrate-polluted pyritic aquifer. Environ. sci. technol. 47(18), 10415–10422 (2013), http://pubs.acs.org/doi/abs/10.1021/es4023909

  • J. Bear, Y. Bachmat, Introduction to modeling of transport phenomena in porous media, vol. 4 (Springer, Berlin, 2012)

    Google Scholar 

  • D. L. Parkhurst , C. A. J. Appelo. User’s guide to phreeqc (version 2) : a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. Technical report, U.S. department of the interior u.s. geological survey, 1999, http://pubs.er.usgs.gov/publication/wri994259

  • M. A. Williamson, J. D. Rimstidt, The kinetics and electrochemical rate-determining step of aqueous pyrite oxidation. Geochimica et Cosmochimica Acta, 58(24), 5443 – 5454 (1994). ISSN 0016-7037, http://www.sciencedirect.com/science/article/pii/0016703794902410

  • P. Eckert , C. A. J. Appelo. Hydrogeochemical modeling of enhanced benzene, toluene, ethylbenzene, xylene (btex) remediation with nitrate. Water Resour. Res. 38(8), 5–1–5–11 (2002). ISSN 1944-7973, http://dx.doi.org/10.1029/2001WR000692

  • I. Preiß. Anwendbarkeit einer screeningmethode zur bestimmung des nitratabbaupotenzials mittels redoxprofilmessungen in grundwassermessstellen im hessischen ried. Master’s thesis, Technische Universität Darmstadt. (2013)

    Google Scholar 

  • E. Knipp. Charakterisierung des nitratabbaupotenzials an bohrkernproben aus dem hessischen ried -methodenvalidierung zur lokalisierung regionaler abbauhorizonte. Master’s thesis, Technische Universität Darmstadt. (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eunseon Jang .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jang, E. (2018). Application: Nitrate Reduction Processes. In: OpenGeoSys Tutorial. SpringerBriefs in Earth System Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-67153-6_6

Download citation

Publish with us

Policies and ethics