Skip to main content

Use of in-Cylinder Pressure and Learning Circuits for Engine Modeling and Control

  • Chapter
  • First Online:
  • 737 Accesses

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSNONLINCIRC))

Abstract

The parameter widely considered as the most important for the diagnosis of combustion process in internal combustion engines is the cylinder pressure and numerous control algorithms based on pressure measurement as a feedback signal have been proposed. Use of real-time cylinder pressure in control architectures for both SI and Diesel engines allows to replace many other sensors present in engines and offers a variety of significant advantages in terms of improved engine performances and reduced toxic emissions. The present chapter provides an overview of the main applications of cylinder pressure signal analysis in engine modeling and control.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. L. Guzzella, C. Onder, Introduction to modeling and control of internal combustion engine systems (Springer Science & Business Media, 2009)

    Google Scholar 

  2. M.T. Wlodarczyk, High accuracy glow plug-integrated cylinder pressure sensor for closed loop engine control. SAE Technical Paper no. 2006-01-0184 (2006)

    Google Scholar 

  3. J.B. Heywood, Internal Combustion Engine Fundamentals (McGraw-Hill, 1988)

    Google Scholar 

  4. C. S. Daw, C.E.A. Finney, J.B. Green, M.B. Kennel, J.F. Thomas, F.T. Connolly, A simple model for cyclic variations in a spark-ignition engine. SAE Technical Paper no. 962086 (1996)

    Google Scholar 

  5. C. Letellier, S. Meunier-Guttin-Cluzel, G. Gouesbet, F. Neveu, T. Duverger, B. Cousyn, Use of the nonlinear dynamical system theory to study cycle-to-cycle variations from spark ignition engine pressure data. SAE Technical Paper no. 971640 (1997)

    Google Scholar 

  6. I. Glaser, J.D. Powell, Optimal closed-loop spark control of an automotive engine. SAE Technical Paper no. 810058 (1981)

    Google Scholar 

  7. F.A. Matekunas. Modes and measures of cyclic combustion variability. SAE Technical Paper no. 830337 (1983)

    Google Scholar 

  8. J.D. Powell, Engine control using cylinder pressure: past, present, and future. J. Dyn. Syst. Meas. Contr. 115(2B), 343–350 (1993)

    Article  Google Scholar 

  9. M.C. Sellnau, F.A. Matekunas, P.A. Battiston, C.F. Chang, D.R. Lancaster, Cylinder-pressure-based engine control using pressure-ratio-management and low-cost non-intrusive cylinder pressure sensors. SAE Technical paper no. 2000-01-0932 (2000)

    Google Scholar 

  10. N. Kobayashi, T. Akatsuka, J. Nakano, T. Kamo, S. Matsushita, Development of the Toyota lean combustion system. Int. J. Veh. Des. 5(6), 731–738 (1984)

    Google Scholar 

  11. S. Leonhardt, N. Muller, R. Isermann, Methods for engine supervision and control based on cylinder pressure information. IEEE/ASME Trans. Mechatron. 4(3), 235–245 (1999)

    Article  Google Scholar 

  12. H. Hulser, K. Neunteufl, C. Roduner, M. Weissback, L. Burgler, M. Glensvig, EmQI: intelligent Combustion and Control for Tier2 Bin5 Diesel Engines. SAE paper no. 2006-01-1146 (2006)

    Google Scholar 

  13. M. Bargende, Most optimal location of 50% mass fraction burned and automatic knock detection. Components for automatic optimization of SI-engine calibrations. MTZ Worldwide 56(10), 632–638 (1995)

    Google Scholar 

  14. O. Barbarisi, A. Di Gaeta, L. Glielmo, S. Santini, An extended Kalman observer for the in-cylinder air mass flow estimation, in MECA02 International Workshop on Diagnostics in Automotive Engines and Vehicles (2001)

    Google Scholar 

  15. M. Jankovic, S.W. Magner, Air charge estimation and prediction in spark ignition internal combustion engines, in Proceedings of the American Control Conference, San Diego, California, June (1999)

    Google Scholar 

  16. J.W. Grizzle, J.A. Cookyand, W.P. Milam, Improved cylinder air charge estimation for transient air fuel ratio control, in Proceedings of American Control Conference (1994)

    Google Scholar 

  17. I. Stotsky, A. Kolmanovsky, Application of input estimation and control in automotive engines. Control Eng. Pract. 10, 1371–1383 (2002)

    Article  Google Scholar 

  18. F. Taglialatela, N. Cesario, M. Lavorgna, Soft computing mass air flow estimator for a single-cylinder SI engine. SAE Technical Paper no. 2006-01-0010 (2006)

    Google Scholar 

  19. F. Millo, C.V. Ferraro, Knock in S.I. engines: a comparison between different techniques for detection and control. SAE Paper 982477 (1998)

    Google Scholar 

  20. K. Schmillen, M. Rechs, Different methods of knock detection and knock control. SAE Paper 910858 (1991)

    Google Scholar 

  21. J. Lee, S. Hwang, J. Lim, D. Jeon, Y. Cho, A new knock-detection method using cylinder pressure, block vibration and sound pressure signals from a SI engine. SAE Paper 981436 (1998)

    Google Scholar 

  22. K. Chun, K. Kim, Measurement and analysis of knock in a SI engine using the cylinder pressure and block vibration signals. SAE Paper 940146 (1994)

    Google Scholar 

  23. C. Elmqvist, F. Lindström, H.E. Ångström, B. Grandin, G. Kalghatgi, Optimizing engine concepts by using a simple model for knock prediction. SAE Technical Paper 2003-01-3123 (2003)

    Google Scholar 

  24. W.R. Leppard, Individual-cylinder knock occurrence and intensity in multicylinder engines. SAE Paper 820074 (1982)

    Google Scholar 

  25. P.V. Puzinauskas, Examinations of methods used to characterize engine knock. SAE Paper no. 920808 (1992)

    Google Scholar 

  26. E. Antonelli, Definizione e misura dell’intensità di detonazione. ATA-July (1967)

    Google Scholar 

  27. F. Taglialatela, G. Moselli, M. Lavorgna, Engine knock detection and control using in-cylinder pressure signal and soft computing techniques. SAE Technical Paper no. 2005-24-061 (2005)

    Google Scholar 

  28. M. Lavorgna, M. Lo Presti, G. Rizzotto, Me todologie per la sintesi e l’ analisi dei controllori fuzzy. Cavallotto edizioni (1996)

    Google Scholar 

  29. L. Fortuna, M. Lavorgna et al., Soft computing e valenze applicative. Cavallotto edizioni (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ferdinando Taglialatela Scafati .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Taglialatela Scafati, F., Lavorgna, M., Mancaruso, E., Vaglieco, B. (2018). Use of in-Cylinder Pressure and Learning Circuits for Engine Modeling and Control. In: Nonlinear Systems and Circuits in Internal Combustion Engines. SpringerBriefs in Applied Sciences and Technology(). Springer, Cham. https://doi.org/10.1007/978-3-319-67140-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67140-6_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67139-0

  • Online ISBN: 978-3-319-67140-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics