Skip to main content

Modeling of Particle Size Distribution at the Exhaust of Internal Combustion Engines

  • Chapter
  • First Online:

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSNONLINCIRC))

Abstract

Nowadays, the interest in the effect of exhaust emissions from road vehicles on public health is stronger than ever. Great attention is paid to particulate matter (PM ) both for its impact on the environment and for the adverse effect on human health. The internal combustion engines (ICEs) are a major source of PM emissions in the urban area. Particles are usually classified according to their diameter in coarse particles, diameter larger than 10 μm (PM10), fine particles, diameter smaller than 2.5 μm (PM2.5). The present chapter will firstly describe the characteristics of engine emitted partices and some of the mechanisms involved in their formation process. Then, it will be introduced a soft computing model, developed by the authors, devoted to the real-time prediction of particle size distribution at the exhaust of internal combustion engines on the basis of some specific inputs, such as engine speed, engine load, and amount of exhaust recirculated gases.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. K. Donaldson, X.Y. Li, W. MacNee, Ultrafine (nanometer) particle mediated lung injury. J. Aerosol Sci. 29, 553–560 (1998)

    Article  Google Scholar 

  2. G. Oberdörster, M.J. Utell, Ultrafine particles in the urban air: to the respiratory track and beyond. Environ. Health Perspect. 110, A440–A441 (2002)

    Article  Google Scholar 

  3. C.A. Pope, D.W. Dockery, Health effects of fine particulate air pollution: lines that connect. J. Air Waste Manag. Assoc. 56, 709–742 (2006)

    Article  Google Scholar 

  4. I.M. Kennedy, The health effects of combustion-generated aerosols. Proc. Combust. Inst. 31, 2757–2770 (2007)

    Article  Google Scholar 

  5. K.A. Bérubé, T.P. Jones, B.J. Williamson, C. Winters, A.J. Morgan, R.J. Richards, Physicochemical characterisation of Diesel exhaust particles: factors for assessing biological activity. Atmos. Environ. 33, 1599–1614 (1999)

    Article  Google Scholar 

  6. A. Seaton, K. Donaldson, Nanoscience, nanotoxicology, and the need to think small. The Lancet; London 365 (9463), 923–4 (2005)

    Google Scholar 

  7. N. Ladommatos, R. Balian, R. Horrocks, L. Cooper, The effect of exhaust gas recirculation on soot formation in a high-speed direct-injection Diesel engine. SAE Technical Paper 960841

    Google Scholar 

  8. D. Ivaldi, M.G. Lisbona, M. Tonetti, An improved EGR system concept for Diesel engines towards fuel neutral emissions. Int. J. Veh. Des. 41(1/2/3/4), 307–325 (2006)

    Google Scholar 

  9. D.R. Tree, K.I. Svensson, Soot processes in compression ignition engines. Prog. Energy Combust. Sci. 33, 272–309 (2007)

    Article  Google Scholar 

  10. W. Bartok, A.F. Sarofim, Chemistry of gaseous pollutant formation and destruction, fossil fuel combustion (Wiley, New York, 1991)

    Google Scholar 

  11. B.S. Haynes, H.G. Wagner, Soot formation. Prog Energy Combust Sci. 7, 229–73 (1981)

    Google Scholar 

  12. M. Ketzela, R. Berkowicz, Modelling the fate of ultrafine particles from exhaust pipe to rural background: an analysis of time scales for dilution. Coagul. Deposition Atmos. Environ. 38, 2639–2652 (2004)

    Article  Google Scholar 

  13. B. Howard, B.L. Wersborg, G.C. Williams, Coagulation of carbon particles in premixed flames. Faraday Symp. Chem. Soc. 7, 109–119 (1973)

    Article  Google Scholar 

  14. J. Warnatz, U. Maas, R.W. Dibble, Physical and chemical fundamentals, modelling and simulation, experiments, pollutant formation, 4th edn. (Springer, Berlin, 2006)

    MATH  Google Scholar 

  15. O.I. Smith, Fundamentals of soot formation in flames with application to Diesel engine particulate emissions. Prog. Energy Combust. Sci. 7, 275–291 (1981)

    Article  Google Scholar 

  16. K.G. Neoh, J.B. Howard, A.F. Sarofim, Effect of oxidation on the physical structure of soot. Proc. Comb. Inst. 20, 951–957 (1985)

    Article  Google Scholar 

  17. P. DeCarlo, D.R. Worsnop, J.G. Slowik, P. Davidovits, J.L. Jimenez, Particle morphology and density characterization by combined mobility and aerodynamic diameter measurements. Part 1: theory. Aerosol Sci. Technol. 38(12), 1185–1205 (2004)

    Article  Google Scholar 

  18. W.C. Hinds, Aerosol technology: properties, behavior, and measurement of airborne particles (Wiley, New York, 1999)

    Google Scholar 

  19. J. Heyder, J. Gebhart, W. Stahlhofen, Water, diameters of airborne particles. Air Soil Pollut. 567–572 (2004)

    Google Scholar 

  20. ELPI User Manual, Dekati Ltd. Tampere, Finland (2006)

    Google Scholar 

  21. M. Matti Maricq, D.H. Podsiadlik, R.E. Chase, Size distributions of motor vehicle exhaust PM: a comparison between ELPI and SMPS measurements. Aerosol Sci. Technol. 33, 239–260 (2000)

    Article  Google Scholar 

  22. N. Collings, B.R. Graskow, Particles from internal combustion engines- what we need to know. Philos. Trans. R. Soc. Lond. A. 358, 2611–2623 (2000)

    Google Scholar 

  23. C. Van Gulijk, J.C.M. Marijnissen, M. Makkee, J.A. Moulijn, A. Schmidt-Ott, Measuring Diesel soot with a scanning mobility particle sizer and an electrical low-pressure impactor: performance assessment with a model for fractal-like agglomerates. Aerosol Sci. 35, 633–655 (2004)

    Article  Google Scholar 

  24. J.E. Dec, A conceptual model of DI Diesel combustion based on laser-sheet imaging. SAE Paper 970873 (1997)

    Google Scholar 

  25. D.B. Kittelson, W.F. Watts, J.P. Johnson, Ultrafine and Nanoparticle Emissions: A New Challenge for Internal Combustion Engine Designers. International Conference “Engines of Sustainable Development”, Naples, 2003

    Google Scholar 

  26. B.R. Graskow, D.B. Kittelson, M.R. Ahamadi, J.E. Morris, Exhaust particulate emissions from two port fuel injected spark ignition engines. SAE Paper n. 1999-01–1144 (1999)

    Google Scholar 

  27. T. Gupta, A. Kothari, D.K. Srivastava, A.K. Agarwa, Measurement of number and size distribution of particles emitted from a mid-sized transportation multipoint port fuel injection gasoline engine. Fuel 89(9), 2230–2233 (2010)

    Google Scholar 

  28. F. Zhao, D.L. Harrington, M.-C.D. Lai, Automotive Gasoline Direct-Injection Engines (SAE, Warrendale, PA, 2002)

    Google Scholar 

  29. G. Oberdörster, E. Oberdörster, J. Oberdörster, Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect. 113(7), 823-839 (2005)

    Google Scholar 

  30. Regulation (EC) No. 715/2007 of the European Parliament and of the Council on type approval of motor vehicles with respect to emissions from light passenger and commercial vehicles (Euro 5 and Euro 6) and on access to vehicle repair and maintenance information (2007)

    Google Scholar 

  31. S. Canale, R. Scotton, “Calcolo della percentuale di EGR – Motori – Sistemi Diesel ed Emissioni”, Orbassano, January 1992

    Google Scholar 

  32. O. Mörsch, P. Sorsche (DaimlerChrysler AG), Investigation of Alternative Methods to Determine Particulate Mass Emissions, http://www.oica.net/htdocs/Main.htm

  33. M. Maricq, N. Xu, E. Chase, Measuring particulate mass emissions with the electrical low pressure impactor. Aerosol Sci. Technol. 40, 68–79 (2006)

    Article  Google Scholar 

  34. H. Zhao, N. Ladommatos, Engine combustion instrumentation and diagnostics. SAE International, 2001

    Google Scholar 

  35. D.J.C. MacKay, Bayes interpolation. Neural Comput. 4(3), 415–447 (1992)

    Article  Google Scholar 

  36. F.D. Foresee, M.T. Hagan, Gauss-Newton approximation to Bayesian regularization, Proceedings of the 1997 International Joint Conference on Neural Networks, pp. 1930–1935 (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ferdinando Taglialatela Scafati .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Taglialatela Scafati, F., Lavorgna, M., Mancaruso, E., Vaglieco, B. (2018). Modeling of Particle Size Distribution at the Exhaust of Internal Combustion Engines. In: Nonlinear Systems and Circuits in Internal Combustion Engines. SpringerBriefs in Applied Sciences and Technology(). Springer, Cham. https://doi.org/10.1007/978-3-319-67140-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67140-6_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67139-0

  • Online ISBN: 978-3-319-67140-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics