Skip to main content

Certified Gathering of Oblivious Mobile Robots: Survey of Recent Results and Open Problems

  • Conference paper
  • First Online:
Critical Systems: Formal Methods and Automated Verification (AVoCS 2017, FMICS 2017)

Abstract

Swarms of mobile robots have recently attracted the focus of the Distributed Computing community. One of the fundamental problems in this context is that of gathering the robots: the robots must meet at a common location, not known beforehand. Despite its apparent simplicity, this problem proved quite hard to characterise fully, due to many model variants, leading to informal error-prone reasoning.

Over the past few years, a significant effort has resulted in the set up of a formal framework, relying on the Coq proof assistant, that was used to provide certified results related to the gathering problem. We survey the main abstractions that permit to reason about oblivious mobile robots that evolve in a bidimensional Euclidean space, the distributed executions they can perform, and the variants of the gathering problem they can solve, while certifying all obtained results. We also describe the remaining steps to obtain a certified full characterisation of the problem.

This work was partially funded by the CNRS PEPS OCAAA 2017 project CYBORG and the Université Claude Bernard Lyon 1 BQR 2017 project PREFER.

The original version of this chapter was revised. The author corrections were updated. The erratum to this chapter is available at https://doi.org/10.1007/978-3-319-67113-0_15

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://pactole.lri.fr.

  2. 2.

    http://coq.inria.fr.

  3. 3.

    A demon is k -fair when any robot is activated within k consecutive activations of any other robot.

References

  1. Agmon, N., Peleg, D.: Fault-tolerant gathering algorithms for autonomous mobile robots. SIAM J. Comput. 36(1), 56–82 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  2. Auger, C., Bouzid, Z., Courtieu, P., Tixeuil, S., Urbain, X.: Certified impossibility results for byzantine-tolerant mobile robots. In: Higashino, T., Katayama, Y., Masuzawa, T., Potop-Butucaru, M., Yamashita, M. (eds.) SSS 2013. LNCS, vol. 8255, pp. 178–190. Springer, Cham (2013). doi:10.1007/978-3-319-03089-0_13

    Chapter  Google Scholar 

  3. Balabonski, T., Delga, A., Rieg, L., Tixeuil, S., Urbain, X.: Synchronous gathering without multiplicity detection: a certified algorithm. In: Bonakdarpour, B., Petit, F. (eds.) SSS 2016. LNCS, vol. 10083, pp. 7–19. Springer, Cham (2016). doi:10.1007/978-3-319-49259-9_2

    Chapter  Google Scholar 

  4. Bérard, B., Lafourcade, P., Millet, L., Potop-Butucaru, M., Thierry-Mieg, Y., Tixeuil, S.: Formal verification of mobile robot protocols. Dis. Comput. 29(6), 459–487 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bonnet, F., Défago, X., Petit, F., Potop-Butucaru, M., Tixeuil, S.: Discovering and assessing fine-grained metrics in robot networks protocols. In: SRDS Workshops 2014, pp. 50–59. IEEE (2014)

    Google Scholar 

  6. Bouzid, Z., Das, S., Tixeuil, S.: Gathering of mobile robots tolerating multiple crash faults. In: ICDCS, pp. 337–346. IEEE Computer Society (2013)

    Google Scholar 

  7. Bouzid, Z., Dolev, S., Potop-Butucaru, M., Tixeuil, S.: Robocast: asynchronous communication in robot networks. In: Lu, C., Masuzawa, T., Mosbah, M. (eds.) OPODIS 2010. LNCS, vol. 6490, pp. 16–31. Springer, Heidelberg (2010). doi:10.1007/978-3-642-17653-1_2

    Chapter  Google Scholar 

  8. Bramas, Q., Tixeuil, S.: Wait-free gathering without chirality. In: Scheideler, C. (ed.) Structural Information and Communication Complexity. LNCS, vol. 9439, pp. 313–327. Springer, Cham (2015). doi:10.1007/978-3-319-25258-2_22

    Chapter  Google Scholar 

  9. Bérard, B., Courtieu, P., Millet, L., Potop-Butucaru, M., Rieg, L., Sznajder, N., Tixeuil, S., Urbain, X.: Formal methods for mobile robots: current results and open problems. Int. J. Inform. Soc. 7(3), 101–114 (2015). Invited Paper

    Google Scholar 

  10. Cieliebak, M., Flocchini, P., Prencipe, G., Santoro, N.: Distributed computing by mobile robots: Gathering. SIAM J. Comput. 41(4), 829–879 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  11. Cohen, R., Peleg, D.: Convergence properties of the gravitational algorithm in asynchronous robot systems. SIAM J. Comput. 34(6), 1516–1528 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  12. Courtieu, P., Rieg, L., Tixeuil, S., Urbain, X.: A certified universal gathering algorithm for oblivious mobile robots. CoRR, abs/1506.01603 (2015)

    Google Scholar 

  13. Courtieu, P., Rieg, L., Tixeuil, S., Urbain, X.: Impossibility of gathering, a Certification. Inf. Process. Lett. 115, 447–452 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  14. Courtieu, P., Rieg, L., Tixeuil, S., Urbain, X.: Certified universal gathering in \({\mathbb{R}}^2\) for oblivious mobile robots. In: Gavoille, C., Ilcinkas, D. (eds.) DISC 2016. LNCS, vol. 9888, pp. 187–200. Springer, Heidelberg (2016). doi:10.1007/978-3-662-53426-7_14

    Chapter  Google Scholar 

  15. Devismes, S., Lamani, A., Petit, F., Raymond, P., Tixeuil, S.: Optimal grid exploration by asynchronous oblivious robots. In: Richa, A.W., Scheideler, C. (eds.) SSS 2012. LNCS, vol. 7596, pp. 64–76. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33536-5_7

    Chapter  Google Scholar 

  16. Dieudonné, Y., Petit, F.: Self-stabilizing gathering with strong multiplicity detection. Theoret. Comput. Sci. 428, 47–57 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  17. Doan, H.T.T., Bonnet, F., Ogata, K.: Model checking of a mobile robots perpetual exploration algorithm. In: Liu, S., Duan, Z., Tian, C., Nagoya, F. (eds.) SOFL+MSVL 2016. LNCS, vol. 10189, pp. 201–219. Springer, Cham (2017). doi:10.1007/978-3-319-57708-1_12

    Chapter  Google Scholar 

  18. Flocchini, P., Prencipe, G., Santoro, N.: Distributed Computing by Oblivious Mobile Robots. Synthesis lectures on distributed computing theory. Morgan & Claypool Publishers, San Rafael (2012)

    MATH  Google Scholar 

  19. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Arbitrary pattern formation by asynchronous, anonymous, oblivious robots. Theor. Comput. Sci. 407(1–3), 412–447 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  20. Fujinaga, N., Yamauchi, Y., Kijima, S., Yamashita, M.: Asynchronous pattern formation by anonymous oblivious mobile robots. In: Aguilera, M.K. (ed.) DISC 2012. LNCS, vol. 7611, pp. 312–325. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33651-5_22

    Chapter  Google Scholar 

  21. Millet, L., Potop-Butucaru, M., Sznajder, N., Tixeuil, S.: On the synthesis of mobile robots algorithms: the case of ring gathering. In: Felber, P., Garg, V. (eds.) SSS 2014. LNCS, vol. 8756, pp. 237–251. Springer, Cham (2014). doi:10.1007/978-3-319-11764-5_17

    Google Scholar 

  22. Prencipe, G.: Impossibility of gathering by a set of autonomous mobile robots. Theoret. Comput. Sci. 384(2–3), 222–231 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  23. Aminof, B., Murano, A., Rubin, S., Zuleger, F.: Verification of asynchronous mobile-robots in partially-known environments. In: Chen, Q., Torroni, P., Villata, S., Hsu, J., Omicini, A. (eds.) PRIMA 2015. LNCS (LNAI), vol. 9387, pp. 185–200. Springer, Cham (2015). doi:10.1007/978-3-319-25524-8_12

    Chapter  Google Scholar 

  24. Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: formation of geometric patterns. SIAM J. Comput. 28(4), 1347–1363 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  25. Yamashita, M., Suzuki, I.: Characterizing geometric patterns formable by oblivious anonymous mobile robots. Theor. Comput. Sci. 411(26–28), 2433–2453 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  26. Yamauchi, Y., Yamashita, M.: Pattern formation by mobile robots with limited visibility. In: Moscibroda, T., Rescigno, A.A. (eds.) SIROCCO 2013. LNCS, vol. 8179, pp. 201–212. Springer, Cham (2013). doi:10.1007/978-3-319-03578-9_17

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xavier Urbain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Balabonski, T., Courtieu, P., Rieg, L., Tixeuil, S., Urbain, X. (2017). Certified Gathering of Oblivious Mobile Robots: Survey of Recent Results and Open Problems. In: Petrucci, L., Seceleanu, C., Cavalcanti, A. (eds) Critical Systems: Formal Methods and Automated Verification. AVoCS FMICS 2017 2017. Lecture Notes in Computer Science(), vol 10471. Springer, Cham. https://doi.org/10.1007/978-3-319-67113-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67113-0_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67112-3

  • Online ISBN: 978-3-319-67113-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics