Advertisement

Sampling-Based Path Planning for Multi-robot Systems with Co-Safe Linear Temporal Logic Specifications

  • Felipe J. MontanaEmail author
  • Jun Liu
  • Tony J. Dodd
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10471)

Abstract

This paper addresses the problem of path planning for multiple robots under high-level specifications given as syntactically co-safe linear temporal logic formulae. Most of the existing solutions use the notion of abstraction to obtain a discrete transition system that simulates the dynamics of the robot. Nevertheless, these solutions have poor scalability with the dimension of the configuration space of the robots. For problems with a single robot, sampling-based methods have been presented as a solution to alleviate this limitation. The proposed solution extends the idea of sampling methods to the multiple robot case. The method samples the configuration space of the robots to incrementally constructs a transition system that models the motion of all the robots as a group. This transition system is then combined with a Büchi automaton, representing the specification, in a Cartesian product. The product is updated with each expansion of the transition system until a solution is found. We also present a new algorithm that improves the performance of the proposed method by guiding the expansion of the transition system. The method is demonstrated with examples considering different number of robots and specifications.

References

  1. 1.
    Alur, R., Henzinger, T.A., Lafferriere, G., Pappas, G.J.: Discrete abstractions of hybrid systems. Proc. IEEE 88(7), 971–984 (2000)CrossRefGoogle Scholar
  2. 2.
    Chen, Y., Ding, X.C., Belta, C.: Synthesis of distributed control and communication schemes from global LTL specifications. In: Proceedings of CDC-ECC, pp. 2718–2723. IEEE (2011)Google Scholar
  3. 3.
    van Den Berg, J., Snoeyink, J., Lin, M.C., Manocha, D.: Centralized path planning for multiple robots: optimal decoupling into sequential plans. In: Robotics: Science and Systems, vol. 2, pp. 2–3 (2009)Google Scholar
  4. 4.
    Dobson, A., Bekris, K.E.: Sparse roadmap spanners for asymptotically near-optimal motion planning. Int. J. Robot. Res. 33(1), 18–47 (2014)CrossRefGoogle Scholar
  5. 5.
    Fainekos, G.E., Girard, A., Kress-Gazit, H., Pappas, G.J.: Temporal logic motion planning for dynamic robots. Automatica 45(2), 343–352 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Guo, M., Dimarogonas, D.V.: Multi-agent plan reconfiguration under local LTL specifications. Int. J. Robot. Res. 34(2), 218–235 (2015)CrossRefGoogle Scholar
  7. 7.
    Kantaros, Y., Zavlanos, M.M.: Sampling-based control synthesis for multi-robot systems under global temporal specifications. In: Proceedings of ICCPS, pp. 3–13. ACM (2017)Google Scholar
  8. 8.
    Karaman, S., Frazzoli, E.: Sampling-based motion planning with deterministic \(\mu \)-calculus specifications. In: Proceedings of CDC/CCC, pp. 2222–2229. IEEE (2009)Google Scholar
  9. 9.
    Kavraki, L.E., Svestka, P., Latombe, J.C., Overmars, M.H.: Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans. Robot. Autom. 12(4), 566–580 (1996)CrossRefGoogle Scholar
  10. 10.
    Kloetzer, M., Belta, C.: Automatic deployment of distributed teams of robots from temporal logic motion specifications. IEEE Trans. Rob. 26(1), 48–61 (2010)CrossRefGoogle Scholar
  11. 11.
    Kupferman, O., Vardi, M.Y.: Model checking of safety properties. Formal Meth. Syst. Des. 19(3), 291–314 (2001)CrossRefzbMATHGoogle Scholar
  12. 12.
    Leahy, K., Jones, A., Schwager, M., Belta, C.: Distributed information gathering policies under temporal logic constraints. In: Proceedings of CDC, pp. 6803–6808. IEEE (2015)Google Scholar
  13. 13.
    Magnenat, S., Waibel, M., Beyeler, A.: Enki: the fast 2D robot simulator (2011). http://home.gna.org/enki
  14. 14.
    Mondada, F., Bonani, M., Raemy, X., Pugh, J., Cianci, C., Klaptocz, A., Magnenat, S., Zufferey, J.C., Floreano, D., Martinoli, A.: The e-puck, a robot designed for education in engineering. In: Proceedings of ICARSC, pp. 59–65. IPCB (2009)Google Scholar
  15. 15.
    Montana, F.J., Liu, J., Dodd, T.J.: Sampling-based stochastic optimal control with metric interval temporal logic specifications. In: Proceedings of CCA, pp. 767–773. IEEE (2016)Google Scholar
  16. 16.
    Solovey, K., Salzman, O., Halperin, D.: Finding a needle in an exponential haystack: Discrete RRT for exploration of implicit roadmaps in multi-robot motion planning. Int. J. Robot. Res. 35(5), 501–513 (2016)CrossRefGoogle Scholar
  17. 17.
    Švestka, P., Overmars, M.H.: Coordinated path planning for multiple robots. Rob. Auton. Syst. 23(3), 125–152 (1998)CrossRefGoogle Scholar
  18. 18.
    Svoreňová, M., Křetínský, J., Chmelík, M., Chatterjee, K., Černá, I., Belta, C.: Temporal logic control for stochastic linear systems using abstraction refinement of probabilistic games. In: Proceedings of HSCC, pp. 259–268. ACM (2015)Google Scholar
  19. 19.
    Tumová, J., Dimarogonas, D.V.: A receding horizon approach to multi-agent planning from local LTL specifications. In: Proceedings of ACC, pp. 1775–1780. IEEE (2014)Google Scholar
  20. 20.
    Ulusoy, A., Smith, S.L., Ding, X.C., Belta, C., Rus, D.: Optimality and robustness in multi-robot path planning with temporal logic constraints. Int. J. Robot. Res. 32(8), 889–911 (2013)CrossRefGoogle Scholar
  21. 21.
    Vasile, C.I., Belta, C.: Sampling-based temporal logic path planning. In: Proceedings of IROS, pp. 4817–4822. IEEE (2013)Google Scholar
  22. 22.
    Wolff, E.M., Topcu, U., Murray, R.M.: Optimal control of non-deterministic systems for a computationally efficient fragment of temporal logic. In: Proceedings of CDC, pp. 3197–3204. IEEE (2013)Google Scholar
  23. 23.
    Zhang, Z., Cowlagi, R.V.: Motion-planning with global temporal logic specifications for multiple nonholonomic robotic vehicles. In: Proceedings of ACC, pp. 7098–7103. IEEE (2016)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Automatic Control and Systems EngineeringUniversity of SheffieldSheffieldUK
  2. 2.Department of Applied MathematicsUniversity of WaterlooWaterlooCanada

Personalised recommendations