Skip to main content

Computational Study on the Cardiovascular System: Ventricular–Ventricular Interaction and Right Ventricular Failure in Pulmonary Arterial Hypertension

  • Chapter
  • First Online:
Right Ventricular Physiology, Adaptation and Failure in Congenital and Acquired Heart Disease

Abstract

In this chapter, we describe how the CircAdapt model of the heart and circulation has been used to both increase our understanding of the pathophysiology of pulmonary arterial hypertension (PAH) and predict the effects of therapy. Simulation results reproduce key features of mechanical incoordination observed in PAH patients, including early diastolic septal motion and strain abnormalities. Our simulations suggest that septal movement is not dependent solely on the transseptal pressure gradient. Additionally, an imbalance of forces at the right ventricular (RV) attachment points resulting from ongoing RV free wall contraction during the early diastolic phase causes abnormal septal motion. We also demonstrate that atrial septostomy in patients with severe PAH might be beneficial because it increases left ventricular (LV) preload and, consequently, allows better maintenance of systemic arterial blood pressure during exercise. Finally, we show that pacing the RV free wall in severely decompensated PAH results in more synchronous LV and RV pressure decay, more homogeneous distribution of myofiber load over the ventricular walls, and a slight improvement of RV pump function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Forfia PR, Vachiery JL. Echocardiography in pulmonary arterial hypertension. Am J Cardiol. 2012;110(6 Suppl):16S–24S.

    Article  PubMed  Google Scholar 

  2. Vonk-Noordegraaf A, Souza R. Cardiac magnetic resonance imaging: what can it add to our knowledge of the right ventricle in pulmonary arterial hypertension? Am J Cardiol. 2012;110(6 Suppl):25S–31S.

    Article  PubMed  Google Scholar 

  3. Chin KM, Coghlan G. Characterizing the right ventricle: advancing our knowledge. Am J Cardiol. 2012;110(6 Suppl):3S–8S.

    Article  PubMed  Google Scholar 

  4. Arts T, Delhaas T, Bovendeerd P, Verbeek X, Prinzen FW. Adaptation to mechanical load determines shape and properties of heart and circulation: the CircAdapt model. Am J Physiol Heart Circ Physiol. 2005;288(4):H1943–54.

    Article  CAS  PubMed  Google Scholar 

  5. Lumens J, Delhaas T, Kirn B, Arts T. Three-wall segment (TriSeg) model describing mechanics and hemodynamics of ventricular interaction. Ann Biomed Eng. 2009;37(11):2234–55.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Arts T, Lumens J, Kroon W, Delhaas T. Control of whole heart geometry by intramyocardial mechano-feedback: a model study. PLoS Comput Biol. 2012;8(2):e1002369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Walmsley J, Arts T, Derval N, Bordachar P, Cochet H, Ploux S, et al. Fast simulation of mechanical heterogeneity in the electrically asynchronous heart using the multipatch module. PLoS Comput Biol. 2015;11(7):e1004284.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Belenkie I, Smith ER, Tyberg JV. Ventricular interaction: from bench to bedside. Ann Med. 2001;33(4):236–41.

    Article  CAS  PubMed  Google Scholar 

  9. Baker AE, Dani R, Smith ER, Tyberg JV, Belenkie I. Quantitative assessment of independent contributions of pericardium and septum to direct ventricular interaction. Am J Phys. 1998;275(2 Pt 2):H476–83.

    CAS  Google Scholar 

  10. Belenkie I, Sas R, Mitchell J, Smith ER, Tyberg JV. Opening the pericardium during pulmonary artery constriction improves cardiac function. J Appl Physiol (1985). 2004;96(3):917–22.

    Article  Google Scholar 

  11. Omens JH. Stress and strain as regulators of myocardial growth. Prog Biophys Mol Biol. 1998;69(2–3):559–72.

    Article  CAS  PubMed  Google Scholar 

  12. Russell B, Curtis MW, Koshman YE, Samarel AM. Mechanical stress-induced sarcomere assembly for cardiac muscle growth in length and width. J Mol Cell Cardiol. 2010;48(5):817–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Olivetti G, Ricci R, Lagrasta C, Maniga E, Sonnenblick EH, Anversa P. Cellular basis of wall remodeling in long-term pressure overload-induced right ventricular hypertrophy in rats. Circ Res. 1988;63(3):648–57.

    Article  CAS  PubMed  Google Scholar 

  14. Minami S, Onodera T, Okazaki F, Miyazaki H, Ohsawa S, Mochizuki S. Myocyte morphological characteristics differ between the phases of pulmonary hypertension-induced ventricular hypertrophy and failure. Int Heart J. 2006;47(4):629–37.

    Article  PubMed  Google Scholar 

  15. Hardziyenka M, Campian ME, de Bruin-Bon HA, Michel MC, Tan HL. Sequence of echocardiographic changes during development of right ventricular failure in rat. J Am Soc Echocardiogr. 2006;19(10):1272–9.

    Article  PubMed  Google Scholar 

  16. Voelkel NF, Quaife RA, Leinwand LA, Barst RJ, McGoon MD, Meldrum DR, et al. Right ventricular function and failure: report of a National Heart, Lung, and Blood Institute working group on cellular and molecular mechanisms of right heart failure. Circulation. 2006;114(17):1883–91.

    Article  PubMed  Google Scholar 

  17. Tanaka H, Tei C, Nakao S, Tahara M, Sakurai S, Kashima T, et al. Diastolic bulging of the interventricular septum toward the left ventricle. An echocardiographic manifestation of negative interventricular pressure gradient between left and right ventricles during diastole. Circulation. 1980;62(3):558–63.

    Article  CAS  PubMed  Google Scholar 

  18. Mori S, Nakatani S, Kanzaki H, Yamagata K, Take Y, Matsuura Y, et al. Patterns of the interventricular septal motion can predict conditions of patients with pulmonary hypertension. J Am Soc Echocardiogr. 2008;21(4):386–93.

    Article  PubMed  Google Scholar 

  19. Keogh AM, Mayer E, Benza RL, Corris P, Dartevelle PG, Frost AE, et al. Interventional and surgical modalities of treatment in pulmonary hypertension. J Am Coll Cardiol. 2009;54(1 Suppl):S67–77.

    Article  PubMed  Google Scholar 

  20. Kurzyna M, Dabrowski M, Bielecki D, Fijalkowska A, Pruszczyk P, Opolski G, et al. Atrial septostomy in treatment of end-stage right heart failure in patients with pulmonary hypertension. Chest. 2007;131(4):977–83.

    Article  PubMed  Google Scholar 

  21. Zierer A, Melby SJ, Voeller RK, Moon MR. Interatrial shunt for chronic pulmonary hypertension: differential impact of low-flow vs. high-flow shunting. Am J Physiol Heart Circ Physiol. 2009;296(3):H639–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Koeken Y, Kuijpers NH, Lumens J, Arts T, Delhaas T. Atrial septostomy benefits severe pulmonary hypertension patients by increase of left ventricular preload reserve. Am J Physiol Heart Circ Physiol. 2012;302(12):H2654–62.

    Article  CAS  PubMed  Google Scholar 

  23. Micheletti A, Hislop AA, Lammers A, Bonhoeffer P, Derrick G, Rees P, et al. Role of atrial septostomy in the treatment of children with pulmonary arterial hypertension. Heart. 2006;92(7):969–72.

    Article  CAS  PubMed  Google Scholar 

  24. Chin KM, Kim NH, Rubin LJ. The right ventricle in pulmonary hypertension. Coron Artery Dis. 2005;16(1):13–8.

    Article  PubMed  Google Scholar 

  25. Sandoval J, Bauerle O, Palomar A, Gomez A, Martinez-Guerra ML, Beltran M, et al. Survival in primary pulmonary hypertension. Validation of a prognostic equation. Circulation. 1994;89(4):1733–44.

    Article  CAS  PubMed  Google Scholar 

  26. Galie N, Hoeper MM, Humbert M, Torbicki A, Vachiery JL, Barbera JA, et al. Guidelines for the diagnosis and treatment of pulmonary hypertension: the Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS), endorsed by the International Society of Heart and Lung Transplantation (ISHLT). Eur Heart J. 2009;30(20):2493–537.

    Article  PubMed  Google Scholar 

  27. Bossone E, Avelar E, Bach DS, Gillespie B, Rubenfire M, Armstrong WF. Diagnostic value of resting tricuspid regurgitation velocity and right ventricular ejection flow parameters for the detection of exercise induced pulmonary arterial hypertension. Int J Card Imaging. 2000;16(6):429–36.

    Article  CAS  PubMed  Google Scholar 

  28. Marcus JT, Gan CT, Zwanenburg JJ, Boonstra A, Allaart CP, Gotte MJ, et al. Interventricular mechanical asynchrony in pulmonary arterial hypertension: left-to-right delay in peak shortening is related to right ventricular overload and left ventricular underfilling. J Am Coll Cardiol. 2008;51(7):750–7.

    Article  PubMed  Google Scholar 

  29. Beyar R. Heart inefficiency in pulmonary hypertension: a double jeopardy. J Am Coll Cardiol. 2008;51(7):758–9.

    Article  PubMed  Google Scholar 

  30. Delhaas T, Arts T, Prinzen FW, Reneman RS. Regional fibre stress-fibre strain area as an estimate of regional blood flow and oxygen demand in the canine heart. J Physiol. 1994;477(Pt 3):481–96.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Prinzen FW, Hunter WC, Wyman BT, McVeigh ER. Mapping of regional myocardial strain and work during ventricular pacing: experimental study using magnetic resonance imaging tagging. J Am Coll Cardiol. 1999;33(6):1735–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lumens J, Arts T, Broers B, Boomars KA, van Paassen P, Prinzen FW, et al. Right ventricular free wall pacing improves cardiac pump function in severe pulmonary arterial hypertension: a computer simulation analysis. Am J Physiol Heart Circ Physiol. 2009;297(6):H2196–205.

    Article  CAS  PubMed  Google Scholar 

  33. Hardziyenka M, Surie S, de Groot JR, de Bruin-Bon HA, Knops RE, Remmelink M, et al. Right ventricular pacing improves haemodynamics in right ventricular failure from pressure overload: an open observational proof-of-principle study in patients with chronic thromboembolic pulmonary hypertension. Europace. 2011;13(12):1753–9.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tammo Delhaas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Delhaas, T., Arts, T., Koeken, Y., Lumens, J., Palau-Caballero, G., Walmsley, J. (2018). Computational Study on the Cardiovascular System: Ventricular–Ventricular Interaction and Right Ventricular Failure in Pulmonary Arterial Hypertension. In: Friedberg, M., Redington, A. (eds) Right Ventricular Physiology, Adaptation and Failure in Congenital and Acquired Heart Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-67096-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67096-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67094-2

  • Online ISBN: 978-3-319-67096-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics