Skip to main content

Abstract

Ventricular performance quantities such as the end-systolic pressure-volume relationship (ESPVR) have been the subject of numerous basic science studies, yet their clinical use remains limited, particularly in the right ventricle (RV). This is primarily due to the difficulty of volume measurements in the small, crescent-shaped RV via catheterization. However, such parameters should be a superior indicator of ventricular function compared with other hemodynamic measures used in the prognosis of pulmonary arterial hypertension (PAH), such as pulmonary vascular resistance index (PVRI). Thus, there is clinical interest in methods that estimate ESPVR and related parameters while being minimally invasive. The focus of this chapter is on one such method and its possible non-invasive extensions, a modified single-beat method which estimates the ventricular-vascular coupling ratio (VVCR), or the ratio of end-systolic ventricular elastance (Ees) to arterial elastance (Ea). Within the single-beat elastance framework, the maximum isovolumic pressure (Pmax,iso) and end-systolic pressure are found; based on a novel assumption about the slopes of Ees and Ea, VVCR is then computed using only pressure. A lower coupling ratio is hypothesized to be a good indicator of RV dysfunction and failure, as represented by the World Health Organization Functional Class (WHO-FC). We also investigate two non-invasive forms of this method using measurements in children: one in which pressure data is obtained from the velocity of the tricuspid regurgitant (TR) jet measured by Doppler ultrasound; and another in which myocardial performance index (MPI) is used to approximate VVCR. Finally, a very new but existing noninvasive method to compute VVCR using only volumes is explored as a predictor of reactivity in children with PH.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Frank O. Die Grundform des arteriellen Pulses Erste. Z Biol. 1899;37:483–526.

    Google Scholar 

  2. Zimmer H. Who discovered the frank-starling mechanism? News Physiol Sci. 2012;17:181–4. https://doi.org/10.1152/nips.01383.2002.

    Google Scholar 

  3. Baan J, van der Velde ET, Jong TTA, et al. Continuous stroke volume and cardiac output from intra-ventricular dimensions obtained with impedance catheter. Cardiovasc Res. 1981;15(6):328–34.

    Article  CAS  PubMed  Google Scholar 

  4. Suga H, Sagawa K. Instantaneous pressure-volume relationships and their ratio in the excised, supported canine left ventricle. Circ Res. 1974;35(1):117–26.

    Article  CAS  PubMed  Google Scholar 

  5. Sunagawa K, Maughan WL, Burkhoff D, Sagawa K. Left ventricular interaction with arterial load studied in isolated canine ventricle. Am J Phys. 1983;245(5 Pt 1):H773–80.

    CAS  Google Scholar 

  6. Sunagawa K, Maughan WL, Sagawa K. Optimal arterial resistance for the maximal stroke work studied in isolated canine left ventricle. Circ Res. 1985;56(4):586–95.

    Article  CAS  PubMed  Google Scholar 

  7. Takeuchi M, Igarashi Y, Tomimoto S, et al. Single-beat estimation of the slope of the end-systolic pressure-volume relation in the human left ventricle. Circulation. 1991;83(1):202–12.

    Article  CAS  PubMed  Google Scholar 

  8. Brimioulle S, January F, Tabima DM, et al. Single-beat estimation of right ventricular end-systolic pressure-volume relationship. Am J Phys. 2003;284(5):H1625–30. https://doi.org/10.1152/ajpheart.01023.2002.

    CAS  Google Scholar 

  9. Rich S. Primary pulmonary hypertension: executive summary from the World Symposium-Primary Pulmonary Hypertension 1998. Geneva World Health Organization. 1998. http://scholar.google.com/scholar?q=Executive+Summary+from+the+World++Symposium+on+Primary+Pulmonary+Hypertension&btnG=&hl=en&as_sdt=0%2C6##0. Accessed 25 Sept 2013.

  10. Galiè N, Hoeper MM, Humbert M, et al. Guidelines for the diagnosis and treatment of pulmonary hypertension: the Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS), endorsed by the Internat. Eur Heart J. 2009;30(20):2493–537. https://doi.org/10.1093/eurheartj/ehp297.

    Article  PubMed  Google Scholar 

  11. Yock PG, Popp RL. Noninvasive estimation of right ventricular systolic pressure by Doppler ultrasound in patients with tricuspid regurgitation. Circulation. 1984;70(4):657–62. https://doi.org/10.1161/01.CIR.70.4.657.

    Article  CAS  PubMed  Google Scholar 

  12. Kimchi A, Gray Ellrodt A, Berman DS, Riedinger MS, Swan HJC, Murata GH. Right ventricular performance in septic shock: A combined radionuclide and hemodynamic study. J Am Coll Cardiol. 1984;4(5):945–51. https://doi.org/10.1016/S0735-1097(84)80055-8.

    Article  CAS  PubMed  Google Scholar 

  13. Vincent JL, Reuse C, Frank N, Contempre B, Kahn RJ. Right ventricular dysfunction in septic shock: assessment by measurements of right ventricular ejection fraction using the thermodilution technique. Acta Anaesthesiol Scand. 1989;33(1):34–8. https://doi.org/10.1111/j.1399-6576.1989.tb02856.x.

    Article  CAS  PubMed  Google Scholar 

  14. Mertens LL, Friedberg MK. Imaging the right ventricle--current state of the art. Nat Rev Cardiol. 2010;7(10):551–63. https://doi.org/10.1038/nrcardio.2010.118.

    Article  PubMed  Google Scholar 

  15. Oe M, Gorcsan J, Mandarino WA, Kawai A, Griffith BP, Kormos RL. Automated echocardiographic measures of right ventricular area as an index of volume and end-systolic pressure-area relations to assess right ventricular function. Circulation. 1995;92(4):1026–33. https://doi.org/10.1161/01.CIR.92.4.1026.

    Article  CAS  PubMed  Google Scholar 

  16. Tei C, Dujardin K, Hodge D. Doppler index combining systolic and diastolic myocardial performance: clinical value in cardiac amyloidisis. J Am Coll Cardiol. 1996;28(3):658–64.

    Article  CAS  PubMed  Google Scholar 

  17. Sandoval J, Bauerle O, Palomar A, et al. Survival in primary pulmonary hypertension. Validation of a prognostic equation. Circulation. 1994;89(4):1733–44. https://doi.org/10.1161/01.CIR.89.4.1733.

    Article  CAS  PubMed  Google Scholar 

  18. Voelkel NF, Quaife RA, Leinwand LA, et al. Right ventricular function and failure: report of a National Heart, Lung, and Blood Institute working group on cellular and molecular mechanisms of right heart failure. Circulation. 2006;114(17):1883–91. https://doi.org/10.1161/CIRCULATIONAHA.106.632208.

    Article  PubMed  Google Scholar 

  19. Barst RJ, Gibbs JS, Ghofrani HA, et al. Updated evidence-based treatment algorithm in pulmonary arterial hypertension. J Am Coll Cardiol. 2009;54(1 Suppl):S78–84. https://doi.org/10.1016/j.jacc.2009.04.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hassoun PM, Mouthon L, Barberà JA, et al. Inflammation, growth factors, and pulmonary vascular remodeling. J Am Coll Cardiol. 2009;54(1 Suppl):S10–9. https://doi.org/10.1016/j.jacc.2009.04.006.

    Article  CAS  PubMed  Google Scholar 

  21. Frantz S, Bauersachs J, Ertl G. Post-infarct remodelling: contribution of wound healing and inflammation. Cardiovasc Res. 2009;81(3):474–81. https://doi.org/10.1093/cvr/cvn292.

    Article  CAS  PubMed  Google Scholar 

  22. Wauthy P, Pagnamenta A, Vassalli F, Naeije R, Brimioulle S. Right ventricular adaptation to pulmonary hypertension: an interspecies comparison. Am J Physiol Heart Circ Physiol. 2004;286(4):H1441–7. https://doi.org/10.1152/ajpheart.00640.2003.

    Article  CAS  PubMed  Google Scholar 

  23. Grignola JC, Ginés F, Bia D, Armentano R. Improved right ventricular-vascular coupling during active pulmonary hypertension. Int J Cardiol. 2007;115(2):171–82. https://doi.org/10.1016/j.ijcard.2006.03.007.

    Article  PubMed  Google Scholar 

  24. Ghuysen A, Lambermont B, Kolh P, et al. Alteration of right ventricular-pulmonary vascular coupling in a porcine model of progressive pressure overloading. Shock. 2008;29(2):197–204. https://doi.org/10.1097/SHK.0b013e318070c790.

    PubMed  Google Scholar 

  25. Missant C, Rex S, Segers P, Wouters PF. Levosimendan improves right ventriculovascular coupling in a porcine model of right ventricular dysfunction. Crit Care Med. 2007;35(3):707–15.

    Article  CAS  PubMed  Google Scholar 

  26. Burkhoff D, Mirsky I, Suga H. Assessment of systolic and diastolic ventricular properties via pressure-volume analysis: a guide for clinical, translational, and basic researchers. Am J Physiol Heart Circ Physiol. 2005;289(2):H501–12. https://doi.org/10.1152/ajpheart.00138.2005.

    Article  CAS  PubMed  Google Scholar 

  27. Kelly RP, Ting C, Yang T, et al. Effective arterial elastance as index of arterial vascular load in humans. Circulation. 1992;86:513–21. https://doi.org/10.1161/01.CIR.86.2.513.

    Article  CAS  PubMed  Google Scholar 

  28. Lam CSP, Roger VL, Rodeheffer RJ, et al. Cardiac structure and ventricular-vascular function in persons with heart failure and preserved ejection fraction from Olmsted County, Minnesota. Circulation. 2007;115(15):1982–90. https://doi.org/10.1161/CIRCULATIONAHA.106.659763.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Sanz J, García-Alvarez A, Fernández-Friera L, et al. Right ventriculo-arterial coupling in pulmonary hypertension: a magnetic resonance study. Heart. 2012;98(3):238–43. https://doi.org/10.1136/heartjnl-2011-300462.

    Article  PubMed  Google Scholar 

  30. Trip P, Kind T, van de Veerdonk MC, et al. Accurate assessment of load-independent right ventricular systolic function in patients with pulmonary hypertension. J Heart Lung Transplant. 2013;32(1):50–5. https://doi.org/10.1016/j.healun.2012.09.022.

    Article  PubMed  Google Scholar 

  31. Alyono D, Larson VE, Anderson RW. Defining end systole for end-systolic pressure-volume ratio. J Surg Res. 1985;39(4):344–50. https://doi.org/10.1016/0022-4804(85)90113-1.

    Article  CAS  PubMed  Google Scholar 

  32. Sato T, Tsujino I, Oyama-Manabe N, et al. Simple prediction of right ventricular ejection fraction using tricuspid annular plane systolic excursion in pulmonary hypertension. Int J Card Imaging. 2013;29(8):1799–805. https://doi.org/10.1007/s10554-013-0286-7.

    Article  Google Scholar 

  33. Ogihara Y, Yamada N, Dohi K, et al. Utility of right ventricular Tei-index for assessing disease severity and determining response to treatment in patients with pulmonary arterial hypertension. J Cardiol. 2013. http://www.sciencedirect.com/science/article/pii/S0914508713002220. Accessed 16 Sept 2013.

  34. Badesch DB, Champion HC, Sanchez MAG, et al. Diagnosis and assessment of pulmonary arterial hypertension. J Am Coll Cardiol. 2009;54(1 Suppl):S55–66. https://doi.org/10.1016/j.jacc.2009.04.011.

    Article  PubMed  Google Scholar 

  35. Zhang Y, Wang Y, Wang W, Liu B. Doppler ultrasound signal denoising based on wavelet frames. IEEE Trans Ultrason Ferroelectr Freq Control. 2001;48(3):709–16.

    Article  CAS  PubMed  Google Scholar 

  36. Tei C, Nishimura RA, Seward JB, Tajik AJ. Noninvasive Doppler-derived myocardial performance index: Correlation with simultaneous measurements of cardiac catheterization measurements. J Am Soc Echocardiogr. 1997;10(2):169–78. https://doi.org/10.1016/S0894-7317(97)70090-7.

    Article  CAS  PubMed  Google Scholar 

  37. Monroe RG, French GN. Left ventricular pressure-volume relationships and myocardial oxygen consumption in the isolated heart. Circ Res. 1961;9(2):362–73. Available from: http://circres.ahajournals.org/cgi/doi/10.1161/01.RES.9.2.362

    Article  CAS  PubMed  Google Scholar 

  38. Monroe RG, French G. Ventricular pressure-volume relationships and oxygen consumption in fibrillation and arrest. Circ Res. 1960;8(1):260–6. Available from: http://circres.ahajournals.org/cgi/doi/10.1161/01.RES.8.1.260

    Article  CAS  PubMed  Google Scholar 

  39. Monroe RG, Strang RH, LaFarge CG, Levy J. Ventricular performance, pressure-volume relationships, and O2 consumption during hypothermia. Am J Physiol. 1964;206(1):67–73.

    Google Scholar 

  40. Lafontant R, Feinberg H, Katz L. Pressure-volume relationships in right ventricle. Circ Res. 1962;11:699–701. Available from: http://circres.ahajournals.org/content/11/4/699.short

    Article  CAS  PubMed  Google Scholar 

  41. Taylor R, Covell J, Ross J Jr. Volume-tension diagrams of ejecting and isovolumic contractions in left ventricle. Am J Physiol. 1969;216:1097–102. http://ajplegacy.physiology.org/content/ajplegacy/216/5/1097.full.pdf

    CAS  PubMed  Google Scholar 

  42. Cross C, Rieben P. Influence of coronary perfusion and myocarckd edema on pressure-volume diagram of left ventricle. Am J Physiol. 1961;201:102–8. Available from: http://ajplegacy.physiology.org/content/ajplegacy/201/1/102.full.pdf

    CAS  PubMed  Google Scholar 

  43. Hild R, Mechelke K, Nusser E. Über die Beziehungen zwischen dem Druck und der Stromstärke in der Arteria pulmonalis sowie der Leistung des rechten Ventrikels beim “unbeeinflußten Kreislauf” der Katze und im oligämischen Schock. Pflüger’s Archiv für die gesamte Physiologie des Menschen und der Tiere. 1956;263(4):401–10. Available from: http://link.springer.com/article/10.1007/BF00380426

    Article  CAS  Google Scholar 

  44. Hild R, Sick L. Das Druck-Volumen-Diagramm des isolierten spontan schlagenden Katzenherzens. Z Biol. 1955;107:51. Available from http://scholar.google.com/scholar?q=hild+and+sick+1955&btnG=&hl=en&as_sdt=0%2C6#1

    Google Scholar 

  45. Ullrich KJ, Riecker G, Kramer K. Das Druckvolumdiagramm des Warmbl terherzens. Pflügers Arch for die Gesamte Physiol des Menschen und der Tiere. 1954;259(6):481–98. Available from: http://link.springer.com/10.1007/BF00412913

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kendall S. Hunter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hobson, N.E., Hunter, K.S. (2018). Ventricular-Vascular Coupling in the Pulmonary Circulation. In: Friedberg, M., Redington, A. (eds) Right Ventricular Physiology, Adaptation and Failure in Congenital and Acquired Heart Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-67096-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67096-6_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67094-2

  • Online ISBN: 978-3-319-67096-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics