Micro-Imaging in Forensic Medicine

Chapter

Abstract

Micro-radiology has a spatial resolution of a few microns and may be considered the bridge that connects diagnostic imaging and histopathology. The main advantages of micro-radiology techniques, such as micro-computed tomography, micro-magnetic resonance imaging, and ultrasound microscopy are that there is no need for optical transparency in the specimen and imaging is non-destructive. Despite remaining an emerging technology, their use in forensic medicine is growing because they permit the detection of tiny fractures or dislocations of bones, teeth or calcified tissues, the virtual analysis of the micro-architecture of nervous, pulmonary or cardiac tissues, and the 3D reconstruction of the spatial distribution of foreign bodies with a density higher than 1000 HU on the surface or inside biological specimens. In this overview, the prominent areas of practice of micro-imaging methods in the fields of forensic pathology, anthropology and ballistics are illustrated.

References

  1. 1.
    Blitz AM, Aygun N, Herzka DA (2015) Invited commentary: the rise of microradiology. Radiographics 35(4):1091–1093CrossRefPubMedGoogle Scholar
  2. 2.
    Tadrous PJ (2000) Methods for imaging the structure and function of living tissues and cells: 3. confocal microscopy and micro-radiology. The. J Pathol 191(4):345–354CrossRefPubMedGoogle Scholar
  3. 3.
    Wehrli FW, Song HK, Saha PK, Wright AC (2006) Quantitative MRI for the assessment of bone structure and function. NMR Biomed 19(7):731–764CrossRefPubMedGoogle Scholar
  4. 4.
    Langheinrich AC, Bohle RM, Breithecker A, Lommel D, Rau WS (2004) Micro-computed tomography of the vasculature in parenchymal organs and lung alveoli. RoFo 176(9):1219–1225CrossRefPubMedGoogle Scholar
  5. 5.
    Schladitz K (2011) Quantitative micro-CT. J Microsc 243(2):111–117CrossRefPubMedGoogle Scholar
  6. 6.
    Mizutani R, Suzuki Y (2012) X-ray microtomography in biology. Micron 43(2–3):104–115CrossRefPubMedGoogle Scholar
  7. 7.
    Wise LD, Winkelmann CT, Dogdas B, Bagchi A (2013) Micro-computed tomography imaging and analysis in developmental biology and toxicology. Birth Defects Res C Embryo Today 99(2):71–82CrossRefPubMedGoogle Scholar
  8. 8.
    Pautler RG, Fraser SE (2003) The year(s) of the contrast agent—micro-MRI in the new millennium. Curr Opin Immunol 15(4):385–392CrossRefPubMedGoogle Scholar
  9. 9.
    Kettner M, Potente S, Schulz B, Knauff P, Schmidt PH, Ramsthaler F (2014) Analysis of laryngeal fractures in decomposed bodies using microfocus computed tomography (mfCT). Forensic Sci Med Pathol 10(4):607–612CrossRefPubMedGoogle Scholar
  10. 10.
    Fais P, Giraudo C, Viero A, Miotto D, Bortolotti F, Tagliaro F, Montisci M, Cecchetto G (2016) Micro computed tomography features of laryngeal fractures in a case of fatal manual strangulation. Leg Med (Tokyo) 18:85–89CrossRefGoogle Scholar
  11. 11.
    Chen T, Chodara AM, Sprecher AJ, Fang F, Song W, Tao C, Jiang JJ (2012) A new method of reconstructing the human laryngeal architecture using micro-MRI. J Voice 26(5):555–562CrossRefPubMedGoogle Scholar
  12. 12.
    Thali MJ, Taubenreuther U, Karolczak M, Braun M, Brueschweiler W, Kalender WA, Dirnhofer R (2003) Forensic microradiology: micro-computed tomography (Micro-CT) and analysis of patterned injuries inside of bone. J Forensic Sci 48(6):1336–1342PubMedGoogle Scholar
  13. 13.
    Pounder DJ, Sim LJ (2011) Virtual casting of stab wounds in cartilage using micro-computed tomography. Am J Forensic Med Pathol 32(2):97–99CrossRefPubMedGoogle Scholar
  14. 14.
    Capuani C, Rouquette J, Payre B, Moscovici J, Delisle MB, Telmon N, Guilbeau-Frugier C (2013) Deciphering the elusive nature of sharp bone trauma using epifluorescence macroscopy: a comparison study multiplexing classical imaging approaches. Int J Leg Med 127(1):169–176CrossRefGoogle Scholar
  15. 15.
    Pelletti G, Viel G, Fais P, Viero A, Visentin S, Miotto D, Montisci M, Cecchetto G, Giraudo C (2017) Micro-computed tomography of false starts produced on bone by different hand-saws. Leg Med (Tokyo). doi:http://dx.doi.org/10.1016/j.legalmed.2017.01.009
  16. 16.
    Kampschulte M, Schneider CR, Litzlbauer HD, Tscholl D, Schneider C, Zeiner C, Krombach GA, Ritman EL, Bohle RM, Langheinrich AC (2013) Quantitative 3D micro-CT imaging of human lung tissue. RoFo 185(9):869–876CrossRefPubMedGoogle Scholar
  17. 17.
    Ritman EL (2005) Micro-computed tomography of the lungs and pulmonary-vascular system. Proc Am Thorac Soc 2(6):477–480, 501Google Scholar
  18. 18.
    De Langhe E, Vande Velde G, Hostens J, Himmelreich U, Nemery B, Luyten FP, Vanoirbeek J, Lories RJ (2012) Quantification of lung fibrosis and emphysema in mice using automated micro-computed tomography. PLoS ONE 7(8):e43123CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Bertrand A, Pasquier A, Petiet A, Wiggins C, Kraska A, Joseph-Mathurin N, Aujard F, Mestre-Frances N, Dhenain M (2013) Micro-MRI study of cerebral aging: ex vivo detection of hippocampal subfield reorganization, microhemorrhages and amyloid plaques in mouse lemur primates. PLoS ONE 8(2):e56593CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Mizutani R, Takeuchi A, Uesugi K, Takekoshi S, Osamura RY, Suzuki Y (2010) Microtomographic analysis of neuronal circuits of human brain. Cereb Cortex 20(7):1739–1748CrossRefPubMedGoogle Scholar
  21. 21.
    Happel CM, Klose C, Witton G, Angrisani GL, Wienecke S, Groos S, Bach FW, Bormann D, Manner J, Yelbuz TM (2010) Non-destructive, high-resolution 3-dimensional visualization of a cardiac defect in the chick embryo resembling complex heart defect in humans using micro-computed tomography: double outlet right ventricle with left juxtaposition of atrial appendages. Circulation 122(22):e561–e564CrossRefPubMedGoogle Scholar
  22. 22.
    Chandler N, Aslanidi O, Buckley D, Inada S, Birchall S, Atkinson A, Kirk D, Monfredi O, Molenaar P, Anderson R, Sharma V, Sigg D, Zhang H, Boyett M, Dobrzynski H (2011) Computer three-dimensional anatomical reconstruction of the human sinus node and a novel paranodal area. Anat Rec (Hoboken) 294(6):970–979CrossRefGoogle Scholar
  23. 23.
    Langheinrich AC, Bohle RM, Greschus S, Hackstein N, Walker G, von Gerlach S, Rau WS, Holschermann H (2004) Atherosclerotic lesions at micro CT: feasibility for analysis of coronary artery wall in autopsy specimens. Radiology 231(3):675–681CrossRefPubMedGoogle Scholar
  24. 24.
    Wise LD, Winkelmann CT (2009) Micro-computed tomography and alizarin red evaluations of boric acid-induced fetal skeletal changes in Sprague-Dawley rats. Birth Defects Res B Dev Reprod Toxicol 86(3):214–219CrossRefPubMedGoogle Scholar
  25. 25.
    Lombardi CM, Zambelli V, Botta G, Moltrasio F, Cattoretti G, Lucchini V, Fesslova V, Cuttin MS (2014) Postmortem microcomputed tomography (micro-CT) of small fetuses and hearts. U Ultrasound Obstet Gynecol 44(5):600–609CrossRefPubMedGoogle Scholar
  26. 26.
    Thayyil S, Cleary JO, Sebire NJ, Scott RJ, Chong K, Gunny R, Owens CM, Olsen OE, Offiah AC, Parks HG, Chitty LS, Price AN, Yousry TA, Robertson NJ, Lythgoe MF, Taylor AM (2009) Post-mortem examination of human fetuses: a comparison of whole-body high-field MRI at 9.4 T with conventional MRI and invasive autopsy. Lancet 374(9688):467–475CrossRefPubMedGoogle Scholar
  27. 27.
    Lhuaire M, Martinez A, Kaplan H, Nuzillard JM, Renard Y, Tonnelet R, Braun M, Avisse C, Labrousse M (2014) Human developmental anatomy: microscopic magnetic resonance imaging (muMRI) of four human embryos (from Carnegie Stage 10 to 20). Ann Anat 196(6):402–409CrossRefPubMedGoogle Scholar
  28. 28.
    Langheinrich AC, Wienhard J, Vormann S, Hau B, Bohle RM, Zygmunt M (2004) Analysis of the fetal placental vascular tree by X-ray micro-computed tomography. Placenta 25(1):95–100CrossRefPubMedGoogle Scholar
  29. 29.
    Telmon N, Gaston A, Chemla P, Blanc A, Joffre F, Rouge D (2005) Application of the Suchey-Brooks method to three-dimensional imaging of the pubic symphysis. J Forensic Sci 50(3):507–512CrossRefPubMedGoogle Scholar
  30. 30.
    Wade A, Nelson A, Garvin G, Holdsworth DW (2011) Preliminary radiological assessment of age-related change in the trabecular structure of the human os pubis. J Forensic Sci 56(2):312–319CrossRefPubMedGoogle Scholar
  31. 31.
    Rutty GN, Brough A, Biggs MJ, Robinson C, Lawes SD, Hainsworth SV (2013) The role of micro-computed tomography in forensic investigations. For Sci Int 225(1–3):60–66Google Scholar
  32. 32.
    Someda H, Saka H, Matsunaga S, Ide Y, Nakahara K, Hirata S, Hashimoto M (2009) Age estimation based on three-dimensional measurement of mandibular central incisors in Japanese. For Sci Int 185(1–3):110–114Google Scholar
  33. 33.
    Steyn M, De Boer HH, Van der Merwe AE (2014) Cranial trauma and the assessment of posttraumatic survival time. For Sci Int 244:e25–e29Google Scholar
  34. 34.
    Appleby J, Rutty GN, Hainsworth SV, Woosnam-Savage RC, Morgan B, Brough A, Earp RW, Robinson C, King TE, Morris M, Buckley R (2015) Perimortem trauma in King Richard III: a skeletal analysis. Lancet 385(9964):253–259CrossRefPubMedGoogle Scholar
  35. 35.
    Richards CS, Simonsen TJ, Abel RL, Hall MJ, Schwyn DA, Wicklein M (2012) Virtual forensic entomology: improving estimates of minimum post-mortem interval with 3D micro-computed tomography. For Sci Int 220(1–3):251–264Google Scholar
  36. 36.
    Sandholzer MA, Sui T, Korsunsky AM, Walmsley AD, Lumley PJ, Landini G (2014) X-ray scattering evaluation of ultrastructural changes in human dental tissues with thermal treatment. J For Sci 59(3):769–774Google Scholar
  37. 37.
    Cecchetto G, Amagliani A, Giraudo C, Fais P, Cavarzeran F, Montisci M, Feltrin G, Viel G, Ferrara SD (2012) MicroCT detection of gunshot residue in fresh and decomposed firearm wounds. Int J Leg Med 126(3):377–383CrossRefGoogle Scholar
  38. 38.
    Cecchetto G, Giraudo C, Amagliani A, Viel G, Fais P, Cavarzeran F, Feltrin G, Ferrara SD, Montisci M (2011) Estimation of the firing distance through micro-CT analysis of gunshot wounds. Int J Leg Med 125(2):245–251CrossRefGoogle Scholar
  39. 39.
    Fais P, Giraudo C, Boscolo-Berto R, Amagliani A, Miotto D, Feltrin G, Viel G, Ferrara SD, Cecchetto G (2013) Micro-CT features of intermediate gunshot wounds severely damaged by fire. Int J Leg Med 127(2):419–425CrossRefGoogle Scholar
  40. 40.
    Kampschulte M, Langheinirch AC, Sender J, Litzlbauer HD, Althohn U, Schwab JD, Alejandre-Lafont E, Martels G, Krombach GA (2016) Nano-computed tomography: technique and applications. Rofo 188(2):146–154CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Legal and Occupational Medicine, Toxicology and Public HealthUniversity-Hospital of PadovaPadovaItaly

Personalised recommendations