Clinical Forensic Imaging

  • Kathrin YenEmail author
  • Astrid Krauskopf


Clinical Forensic Imaging (CFI), i.e. the forensic application of imaging methods in living persons following assault or other issues of potential legal interest, emerged a few years after post-mortem imaging had become one of the most belabored fields of research in forensic medicine. However, still rather few systematic studies on clinical forensic imaging exist, although the value of imaging methods for the detection of traumatic injuries and other findings in living persons has meanwhile been demonstrated clearly. Clinical forensic imaging, due to the absence of predominantly MRI radiation exposure, can add unique information regarding, for example, injuries in the body tissues and organs, about the age of an injury or the age of a person. In the following text, the current status of CFI shall be outlined with a specific focus on recent advances in CFI research.


  1. 1.
    Thali MJ, Vock P, Dirnhofer R (eds) (2009) The virtopsy approach: 3D optical and radiological scanning and reconstruction in forensic medicine. CRC Press, Boca RatonGoogle Scholar
  2. 2.
    Bauer M, Polzin S, Patzelt D (2004) The use of clinical CCT images in the forensic examination of closed head injuries. J Clin Forensic Med 11(2):65–70CrossRefPubMedGoogle Scholar
  3. 3.
    Yen K, Vock P, Christe A, Scheurer E, Plattner T, Schön C, Aghayev E, Jackowski C, Beutler V, Thali MJ, Dirnhofer R (2007) Clinical forensic radiology in strangulation victims: forensic expertise based on magnetic resonance imaging (MRI) findings. Int J Legal Med 121(2):115–123CrossRefPubMedGoogle Scholar
  4. 4.
    Yen K, Dirnhofer R, Ranner G (2009) Clinical forensic imaging. In: Thali MJ, Vock P, Dirnhofer R (eds) The virtopsy approach: 3D optical and radiological scanning and reconstruction in forensic medicine. CRC Press, Boca Raton, pp 363–376Google Scholar
  5. 5.
    Glemser PA, Krauskopf A, Simons D, Yen K (2015) Klinisch-forensische Bildgebung—Erfassung und Dokumentation innerer Verletzungsbefunde bei lebenden Gewaltopfern. Rechtsmedizin 25:67–80CrossRefGoogle Scholar
  6. 6.
    Yen K, Vock P, Tiefenthaler B, Ranner G, Scheurer E, Thali MJ, Zwygart K, Sonnenschein M, Wiltgen M, Dirnhofer R (2004) Virtopsy: forensic traumatology of the subcutaneous fatty tissue; multislice computed tomography (MSCT) and magnetic resonance imaging (MRI) as diagnostic tools. J Forensic Sci 49(4):799–806CrossRefPubMedGoogle Scholar
  7. 7.
    Malli N, Ehammer T, Yen K, Scheurer E (2013) Detection and characterization of traumatic scalp injuries for forensic evaluation using computed tomography. Int J Legal Med 127(1):195–200CrossRefPubMedGoogle Scholar
  8. 8.
    Schuh P, Scheurer E, Fritz K, Pavlic M, Hassler E, Rienmüller R, Yen K (2013) Can clinical CT data improve forensic reconstruction? Int J Legal Med 127(3):631–638CrossRefPubMedGoogle Scholar
  9. 9.
    Webb BA, Petrovic A, Urschler M, Scheurer E (2015) Assessment of fiducial markers to enable the co-registration of photographs and MRI data. Forensic Sci Int 248:148–153CrossRefPubMedGoogle Scholar
  10. 10.
    Jackowski C, Warntjes MJ, Kihlberg J, Berge J, Thali MJ, Persson A (2011) Quantitative MRI in isotropic spatial resolution for forensic soft tissue documentation. Why and how? J Forensic Sci 56(1):208–215CrossRefPubMedGoogle Scholar
  11. 11.
    Sieswerda-Hoogendoorn T, Postema FA, Verbaan D, Majoie CB, van Rijn RR (2014) Age determination of subdural hematomas with CT and MRI: a systematic review. Eur J Radiol 83(7):1257–1268CrossRefPubMedGoogle Scholar
  12. 12.
    Hassler EM, Ogris K, Petrovic A, Neumayer B, Widek T, Yen K, Scheurer E (2015) Contrast of artificial subcutaneous hematomas in MRI over time. Int J Legal Med 129:317–324CrossRefPubMedGoogle Scholar
  13. 13.
    Neumayer B, Hassler E, Petrovic A, Widek T, Ogris K, Scheurer E (2014) Age determination of soft tissue hematomas. NMR Biomed 27:1397–1402CrossRefPubMedGoogle Scholar
  14. 14.
    Petrovic A, Krauskopf A, Hassler E, Stollberger R, Scheurer E (2016) Time related changes of T1, T2, and T2(*) of human blood in vitro. Forensic Sci Int 262:11–17CrossRefPubMedGoogle Scholar
  15. 15.
    Dedouit F, Saint-Martin P, Mokrane FZ, Savall F, Rousseau H, Crubézy E, Rougé D, Telmon N (2015) Virtual anthropology: useful radiological tools for age assessment in clinical forensic medicine and thanatology. Radiol Med 120:874–886CrossRefPubMedGoogle Scholar
  16. 16.
    Wittschieber D, Vieth V, Timme M, Dvorak J, Schmeling A (2014) Magnetic resonance imaging of the iliac crest: age estimation in under-20 soccer players. Forensic Sci Med Pathol 10:198–202CrossRefPubMedGoogle Scholar
  17. 17.
    Saint-Martin P, Rérolle C, Dedouit F, Rousseau H, Rougé D, Telmon N (2014) Evaluation of an automatic method for forensic age estimation by magnetic resonance imaging of the distal tibial epiphysis—a preliminary study focusing on the 18-year threshold. Int J Legal Med 128:675–683CrossRefPubMedGoogle Scholar
  18. 18.
    Krämer JA, Schmidt S, Jürgens KU, Lentschig M, Schmeling A, Vieth V (2014) The use of magnetic resonance imaging to examine ossification of the proximal tibial epiphysis for forensic age estimation in living individuals. Forensic Sci Med Pathol 10:306–313CrossRefPubMedGoogle Scholar
  19. 19.
    Saint-Martin P, Rérolle C, Pucheux J, Dedouit F, Telmon N (2015) Contribution of distal femur MRI to the determination of the 18-year limit in forensic age estimation. Int J Legal Med 129:619–620CrossRefPubMedGoogle Scholar
  20. 20.
    Vieth V, Schulz R, Brinkmeier P, Dvorak J, Schmeling A (2015) Age estimation in U-20 football players using 3.0 tesla MRI of the clavicle. Forensic Sci Int 241:118–122CrossRefGoogle Scholar
  21. 21.
    Ebner T, Stern D, Donner R, Bischof H, Urschler M (2014) Towards automatic bone age estimation from MRI: localization of 3D anatomical landmarks. Med Image Comput Assist Interv 17:421–428Google Scholar
  22. 22.
    Serinelli S, Panebianco V, Martino M, Battisti S, Rodacki K, Marinelli E, Zaccagna F, Semelka RC, Tomei E (2015) Accuracy of MRI skeletal age estimation for subjects 12–19. Potential use for subjects of unknown age. Int J Legal Med 129:609–617CrossRefPubMedGoogle Scholar
  23. 23.
    Schmidt S, Vieth V, Timme M, Dvorak J, Schmeling A (2015) Examination of ossification of the distal radial epiphysis using magnetic resonance imaging. New insights for age estimation in young footballers in FIFA tournaments. Sci Justice 55:139–144CrossRefPubMedGoogle Scholar
  24. 24.
    Ekizoglu O, Hocaoglu E, Can IO, Inci E, Aksoy S, Bilgili MG (2015) Magnetic resonance imaging of distal tibia and calcaneus for forensic age estimation in living individuals. Int J Legal Med 129:825–831CrossRefPubMedGoogle Scholar
  25. 25.
    Baumann P, Widek T, Merkens H, Boldt J, Petrovic A, Urschler M, Kirnbauer B, Jakse N, Scheurer E (2015) Dental age estimation of living persons: Comparison of MRI with OPG. Forensic Sci Int 253:76–80CrossRefPubMedGoogle Scholar
  26. 26.
    Urschler M, Grassegger S, Štern D (2015) What automated age estimation of hand and wrist MRI data tells us about skeletal maturation in male adolescents. Ann Hum Biol 42:358–367CrossRefPubMedGoogle Scholar
  27. 27.
    Ekizoglu O, Hocaoglu E, Inci E, Can IO, Aksoy S, Kazimoglu C (2016) Forensic age estimation via 3-T magnetic resonance imaging of ossification of the proximal tibial and distal femoral epiphyses: Use of a T2-weighted fast spin-echo technique. Forensic Sci Int 260:102.e1–102.e7Google Scholar
  28. 28.
    Serin J, Rérolle C, Pucheux J, Dedouit F, Telmon N, Savall F, Saint-Martin P (2016) Contribution of magnetic resonance imaging of the wrist and hand to forensic age assessment. Int J Legal Med 130(4):1121–1128CrossRefPubMedGoogle Scholar
  29. 29.
    Tangmose S, Jensen KE, Villa C, Lynnerup N (2014) Forensic age estimation from the clavicle using 1.0T MRI—preliminary results. Forensic Sci Int 234:7–12CrossRefPubMedGoogle Scholar
  30. 30.
    Hillewig E, Degroote J, Van der Paelt T, Visscher A, Vandemaele P, Lutin B, D’Hooghe L, Vandriessche V, Piette M, Verstraete K (2013) Magnetic resonance imaging of the sternal extremity of the clavicle in forensic age estimation: towards more sound age estimates. Int J Legal Med 127:677–689CrossRefPubMedGoogle Scholar
  31. 31.
    Urschler M, Höller J, Bornik A, Paul T, Giretzlehner M, Bischof H, Yen K, Scheurer E (2014) Intuitive presentation of clinical forensic data using anonymous and person-specific 3D reference manikins. Forensic Sci Int 241:155–166CrossRefPubMedGoogle Scholar
  32. 32.
    Ma M, Zheng H, Lallie H (2010) Virtual reality and 3D animation in forensic visualization. J Forensic Sci 55(5):1227–1231CrossRefPubMedGoogle Scholar
  33. 33.
    Gotsmy WF, Ebert LC, Bolliger M, Hatch GM, Ketterer T, Thali MJ, Ruder TD (2011) A picture is worth a thousand words—the utility of 3D visualization illustrated by a case of survived pancreatic transection. Leg Med (Tokyo) 13(2):95–97CrossRefGoogle Scholar
  34. 34.
    Röhrich E, Thali M, Schweitzer W (2012) Skin injury model classification based on shape vector analysis. BMC Med Imaging 12:32CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Urschler M, Bornik A, Scheurer E, Yen K, Bischof H, Schmalstieg D (2012) Forensic-case analysis: from 3D imaging to interactive visualization. IEEE Comput Graph Appl 32(4):79–87CrossRefPubMedGoogle Scholar
  36. 36.
    Ebert LC, Thali MJ, Ross S (2011) Getting in touch—3D printing in forensic imaging. Forensic Sci Int 211(1–3):1–6CrossRefGoogle Scholar
  37. 37.
    Kettner M, Schmidt P, Potente S, Ramsthaler F, Schrodt M (2011) Reverse engineering—rapid prototyping of the skull in forensic trauma analysis. J Forensic Sci 56(4):1015–1017CrossRefPubMedGoogle Scholar
  38. 38.
    Kilgus T, Heim E, Haase S, Prüfer S, Müller M, Seitel A, Fangerau M, Wiebe T, Iszatt J, Schlemmer HP, Hornegger J, Yen K, Maier-Hein L (2015) Mobile markerless augmented reality and its application in forensic medicine. Int J Comput Assist Radiol Surg 10(5):573–586CrossRefPubMedGoogle Scholar
  39. 39.
    Campana L, Breitbeck R, Bauer-Kreuz R, Buck U (2016) 3D documentation and visualization of external injury findings by integration of simple photography in CT/MRI data sets (IprojeCT). Int J Legal Med 130(3):787–797CrossRefPubMedGoogle Scholar
  40. 40.
    Prosser I, Lawson Z, Evans A, Harrison S, Morris S, Maguire S, Kemp AM (2012) A timetable for the radiologic features of fracture healing in young children. AJR Am J Roentgenol 198(5):1014–1020CrossRefPubMedGoogle Scholar
  41. 41.
    Halliday KE, Broderick NJ, Somers JM, Hawkes R (2011) Dating fractures in infants. Clin Radiol 66(11):1049–1054CrossRefPubMedGoogle Scholar
  42. 42.
    Sanchez TR, Nguyen H, Palacios W, Doherty M, Coulter K (2013) Retrospective evaluation and dating of non-accidental rib fractures in infants. Clin Radiol 68(8):467–471CrossRefGoogle Scholar
  43. 43.
    Walters MM, Forbes PW, Buonomo C, Kleinman PK (2014) Healing patterns of clavicular birth injuries as a guide to fracture dating in cases of possible infant abuse. Pediatr Radiol 44(10):1224–1229CrossRefPubMedGoogle Scholar
  44. 44.
    Klotzbach H, Delling G, Richter E, Sperhake JP, Püschel K (2003) Post-mortem diagnosis and age estimation of infants fractures. Int J Legal Med 117(2):82–89PubMedGoogle Scholar
  45. 45.
    Bilo RAC, Robben SGF, van Rijn RR (2010) Forensic aspects of pediatric fractures: differentiating accidental trauma from child abuse. Springer, BerlinCrossRefGoogle Scholar
  46. 46.
    Cattaneo C, Marinelli E (2006) Sensitivity of autopsy and radiological examination in detecting bone fractures in an animal model: implications for the assessment of fatal child physical abuse. Forensic Sci Int 164(2–3):131–137CrossRefPubMedGoogle Scholar
  47. 47.
    Baron K, Neumayer B, Widek T, Schick F, Scheicher S, Hassler E, Scheurer E (2016) Quantitative MR imaging in fracture dating-Initial results. Forensic Sci Int 261:61–69CrossRefPubMedGoogle Scholar
  48. 48.
    Yen K, Thali MJ, Aghayev E, Jackowski C, Schweitzer W, Boesch C, Vock P, Dirnhofer R, Sonnenschein M (2005) Strangulation signs: initial correlation of MRI, MSCT, and forensic neck findings. J Magn Reson Imaging 22(4):501–510CrossRefPubMedGoogle Scholar
  49. 49.
    Yen K, Vock P, Christe A, Scheurer E, Plattner T, Schön C, Aghayev E, Jackowski C, Beutler V, Thali MJ, Dirnhofer R (2007) Clinical forensic radiology in strangulation victims: forensic expertise based on magnetic resonance imaging (MRI) findings. Int J Legal Med 121(2):115–123CrossRefPubMedGoogle Scholar
  50. 50.
    Christe A, Oesterhelweg L, Ross S, Spendlove D, Bolliger S, Vock P, Thali MJ (2010) Can MRI of the neck compete with clinical findings in assessing danger to life for survivors of manual strangulation? A statistical analysis. Leg Med (Tokyo) 12(5):228–232CrossRefGoogle Scholar
  51. 51.
    Christe A, Thoeny H, Ross S, Spendlove D, Tshering D, Bolliger S, Grabherr S, Thali MJ, Vock P, Oesterhelweg L (2009) Life-threatening versus non-life-threatening manual strangulation: are there appropriate criteria for MR imaging of the neck? Eur Radiol 19(8):1882–1889CrossRefPubMedGoogle Scholar
  52. 52.
    Yen K, Hassler E, Scheurer E (2013) Klinisch-forensische Bildgebung. In: Grassberger M, Türk EE, Yen K (eds) Klinisch-forensische Medizin: Interdisziplinärer Praxisleitfaden für Ärzte, Pflegekräfte, Juristen und Betreuer von Gewaltopfern. Springer, Wien, New YorkGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Institute of Forensic and Traffic MedicineUniversity Medical HospitalHeidelbergGermany

Personalised recommendations