Skip to main content

Omics in Forensic Toxicology a Bridge Towards Forensic Medicine

  • Chapter
  • First Online:
P5 Medicine and Justice
  • 689 Accesses

Abstract

Cutting-edge omic strategies are bringing new opportunities to many fields of investigation from the biomedical to the biomedicolegal. Comprehension of molecular mechanisms associated with pathologies such as acute or chronic toxicity or sudden cardiac death and the discovery of associated biomarkers represent key elements in the development of novel routes for a better understanding of complex phenomena. Omics and mining of complex generated data have reached a state of maturity. Recent innovations, notably for mass spectrometry with a remarkable gain in sensitivity and selectivity, and the development of next-generation sequencing technologies, have considerably increased the power of these approaches. In spite of ongoing progress in the omic methodologies, their application can already provide informative results leading to more accurate interpretations and evidences. Beyond the remarkable potential in forensic toxicology such as the research of new biomarkers, we predict that these technologies will reinforce translational research between forensic and clinical disciplines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zierer J, Menni C, Kastenmuller G, Spector TD (2015) Integration of ‘omics’ data in aging research: from biomarkers to systems biology. Aging Cell 14:933–944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Versace F, Déglon J, Mangin P, Staub C (2014) Application of direct-infusion ESI-MS/MS for toxicological screening. Bioanalysis 6(15):2043–2055

    Article  PubMed  Google Scholar 

  3. Maurer HH (2013) What is the future of (ultra) high performance liquid chromatography coupled to low and high resolution mass spectrometry for toxicological drug screening? J Chromatogr A 1292:19–24

    Article  CAS  PubMed  Google Scholar 

  4. Johnson CH, Ivanisevic J, Siuzdak G (2016) Metabolomics: beyond biomarkers and towards mechanisms. Nat Rev Mol Cell Biol 17(7):451–459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Thomas A, Lenglet S, Chaurand P et al (2011) Mass spectrometry for the evaluation of cardiovascular diseases based on proteomics and lipidomics. Thromb Haemost 106(1):20–33

    Article  CAS  PubMed  Google Scholar 

  6. Zhang Z, Sun H, Yan G, Wang P, Han Y, Wang X (2014) Metabolomics in diagnosis and biomarker discovery of colorectal cancer. Cancer Lett 345(1):17–20

    Article  CAS  PubMed  Google Scholar 

  7. Wang-Sattler R, Yu Z, Herder C et al (2012) Novel biomarkers for pre-diabetes identified by metabolomics. Mol Syst Biol 8:615

    Article  PubMed  PubMed Central  Google Scholar 

  8. Floegel A, Stefan N, Yu Z et al (2013) Identification of serum metabolites associated with risk of type 2 diabetes using a targeted metabolomic approach. Diabetes 62(2):639–648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang TJ, Larson MG, Vasan RS et al (2011) Metabolite profiles and the risk of developing diabetes. Nat Med 17(4):448–453

    Article  PubMed  PubMed Central  Google Scholar 

  10. Chen C, Gonzalez FJ, Idle JR (2007) LC-MS-based metabolomics in drug metabolism. Drug Metab Rev 39:581–597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nicholson JK, Connelly J, Lindon JC, Holmes E (2002) Metabonomics: a platform for studying drug toxicity and gene function. Nat Rev Drug Discov 1(2):153–1561

    Article  CAS  PubMed  Google Scholar 

  12. Nielsen KL, Telving R, Andreasen MF, Hasselstrøm JB, Johannsen M (2016) A metabolomics study of retrospective forensic data from whole blood samples of humans exposed to 3,4-methylenedioxymethamphetamine: a new approach for identifying drug metabolites and changes in metabolism related to drug consumption. J Proteome Res 15(2):619–627

    Article  CAS  PubMed  Google Scholar 

  13. Shin SY, Fauman EB, Petersen AK et al (2014) An atlas of genetic influences on human blood metabolites. Nat Genet 46(6):543–550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Suhre K, Shin SY, Petersen AK et al (2011) Human metabolic individuality in biomedical and pharmaceutical research. Nature 477(7362):54–60

    Article  CAS  PubMed  Google Scholar 

  15. Bersanelli M, Mosca E, Remondini D, Giampieri E, Sala C, Castellani G, Milanesi L (2016) Methods for the integration of multi-omics data: mathematical aspects. BMC Bioinform 17(Suppl 2):15

    Article  Google Scholar 

  16. Jaremek M, Yu Z, Mangino M et al (2013) Alcohol-induced metabolomic differences in humans. Transl Psychiatry 3:e276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kharbouche H, Faouzi M, Sanchez N, Daeppen JB, Augsburger M, Mangin P, Staub C, Sporkert F (2012) Diagnostic performance of ethyl glucuronide in hair for the investigation of alcohol drinking behavior: a comparison with traditional biomarkers. Int J Legal Med 126(2):243–250

    Article  PubMed  Google Scholar 

  18. Wurst FM, Thon N, Yegles M, SchrĂ¼ck A, Preuss UW, Weinmann W (2015) Ethanol metabolites: their role in the assessment of alcohol intake. Alcohol Clin Exp Res 39(11):2060–2072

    Article  CAS  PubMed  Google Scholar 

  19. Hart AB, Kranzler HR (2015) Alcohol dependence genetics: lessons learned from genome-wide association studies (GWAS) and post-GWAS analyses. Alcohol Clin Exp Res 39(8):1312–1327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kapoor M, Wang JC, Wetherill L et al (2014) Genome-wide survival analysis of age at onset of alcohol dependence in extended high-risk COGA families. Drug Alcohol Depend 142:56–62

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kutalik Z, Benyamin B, Bergmann S et al (2011) Genome-wide association study identifies two loci strongly affecting transferrin glycosylation. Hum Mol Genet 20(18):3710–3717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nagalakshmi U, Waern K, Snyder M (2010) RNA-Seq: a method for comprehensive transcriptome analysis. Curr Protoc Mol Biol 4:4.11.1–13

    Google Scholar 

  23. Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10(1):57–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tang F, Barbacioru C, Wang Y et al (2009) mRNA-Seq whole-transcriptome analysis of a single cell. Nat Methods 6(5):377–382

    Article  CAS  PubMed  Google Scholar 

  25. Farris SP, Arasappan D, Hunicke-Smith S, Harris RA, Mayfield RD (2015) Transcriptome organization for chronic alcohol abuse in human brain. Mol Psychiatry 20(11):1438–1447

    Article  CAS  PubMed  Google Scholar 

  26. Farris SP, Pietrzykowski AZ, Miles MF et al (2015) Applying the new genomics to alcohol dependence. Alcohol 49(8):825–836

    Article  PubMed  PubMed Central  Google Scholar 

  27. Wang J, Yuan W, Li MD (2011) Genes and pathways co-associated with the exposure to multiple drugs of abuse, including alcohol, amphetamine/methamphetamine, cocaine, marijuana, morphine, and/or nicotine: a review of proteomics analyses. Mol Neurobiol 44(3):269–286

    Article  CAS  PubMed  Google Scholar 

  28. Schneider B, Chevallier C, Dominguez A, Bruguier C, Elandoy C, Mangin P, Grabherr S (2012) The forensic radiographer: A new member in the medicolegal team. Am J Forensic Med Pathol 33(1):30–36

    Article  PubMed  Google Scholar 

  29. Grabherr S, Doenz F, Steger B et al (2011) Multi-phase post-mortem CT angiography: Development of a standardized protocol. Int J Legal Med 125(6):791–802

    Article  PubMed  Google Scholar 

  30. Michaud K, Grabherr S, Jackowski C, Bollmann MD, Doenz F, Mangin P (2014) Postmortem imaging of sudden cardiac death. Int J Legal Med 128(1):127–137

    Article  PubMed  Google Scholar 

  31. Chaurand P (2012) Imaging mass spectrometry of thin tissue sections: a decade of collective efforts. J Proteomics 75(16):4883–4892

    Article  CAS  PubMed  Google Scholar 

  32. Chaurand P, Schwartz SA, Reyzer ML, Caprioli RM (2005) Imaging mass spectrometry: principles and potentials. Toxicol Pathol 33(1):92–101

    Article  CAS  PubMed  Google Scholar 

  33. Thomas A, Chaurand P (2014) Advances in tissue section preparation for MALDI imaging MS. Bioanalysis 6(7):967–982

    Article  CAS  PubMed  Google Scholar 

  34. Reyzer ML, Caprioli RM (2007) MALDI-MS-based imaging of small molecules and proteins in tissues. Curr Opin Chem Biol 11(1):29–35

    Article  CAS  PubMed  Google Scholar 

  35. Norris JL, Caprioli RM (2013) Analysis of tissue specimens by matrix-assisted laser desorption/ionization imaging mass spectrometry in biological and clinical research. Chem Rev 113(4):2309–2342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Thomas A, Patterson NH, Laveaux Charbonneau J, Chaurand P (2013) Orthogonal organic and aqueous-based washes of tissue sections to enhance protein sensitivity by MALDI imaging mass spectrometry. J Mass Spectrom 48(1):42–48

    Article  CAS  PubMed  Google Scholar 

  37. Thomas A, Charbonneau JL, Fournaise E, Chaurand P (2012) Sublimation of new matrix candidates for high spatial resolution imaging mass spectrometry of lipids: enhanced information in both positive and negative polarities after 1,5-diaminonapthalene deposition. Anal Chem 84(4):2048–2054

    Article  CAS  PubMed  Google Scholar 

  38. Chaurand P, Caprioli RM (2002) Direct profiling and imaging of peptides and proteins from mammalian cells and tissue sections by mass spectrometry. Electrophoresis 23(18):3125–3135

    Article  CAS  PubMed  Google Scholar 

  39. Franck J, Arafah K, Elayed M, Bonnel D, Vergara D, Jacquet A, Vinatier D, Wisztorski M, Day R, Fournier I, Salzet M (2009) MALDI imaging mass spectrometry: state of the art technology in clinical proteomics. Mol Cell Proteomics 8(9):2023–2033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wolfender JL, Marti G, Thomas A, Bertrand S (2015) Current approaches and challenges for the metabolite profiling of complex natural extracts. J Chromatogr A 1382:136–164

    Article  CAS  PubMed  Google Scholar 

  41. Porta T, Varesio E, Kraemer T, Hopfgartne G (2011) Molecular imaging by mass spectrometry: application to forensics. Spectrosc Eur 23:6–13

    CAS  Google Scholar 

  42. Hoffmann WD, Jackson GP (2015) Forensic mass spectrometry. Annu Rev Anal Chem (Palo Alto Calif) 8:419–440

    Article  CAS  Google Scholar 

  43. Ifa DR, Manicke NE, Dill AL, Cooks RG (2008) Latent fingerprint chemical imaging by mass spectrometry. Science 321(5890):805

    Article  CAS  PubMed  Google Scholar 

  44. Bradshaw R, Rao W, Wolstenholme R, Clench MR, Bleay S, Francese S (2012) Separation of overlapping fingermarks by matrix assisted laser desorption ionisation mass spectrometry imaging. Forensic Sci Int 222(1–3):318–326

    Article  CAS  PubMed  Google Scholar 

  45. Sun N, Walch A (2013) Qualitative and quantitative mass spectrometry imaging of drugs and metabolites in tissue at therapeutic levels. Histochem Cell Biol 140(2):93–104

    Article  CAS  PubMed  Google Scholar 

  46. Porta T, Grivet C, Kraemer T, Varesio E, Hopfgartner G (2011) Single hair cocaine consumption monitoring by mass spectrometric imaging. Anal Chem 83(11):4266–4272

    Article  CAS  PubMed  Google Scholar 

  47. Kamata T, Shima N, Sasaki K, Matsuta S, Takei S, Katagi M, Miki A, Zaitsu K, Nakanishi T, Sato T, Suzuki K, Tsuchihashi H (2015) Time-course mass spectrometry imaging for depicting drug incorporation into hair. Anal Chem 87(11):5476–5481

    Article  CAS  PubMed  Google Scholar 

  48. Hanrieder J, Ekegren T, Andersson M, Bergquist J (2013) MALDI imaging of post-mortem human spinal cord in amyotrophic lateral sclerosis. J Neurochem 124(5):695–707

    Article  CAS  PubMed  Google Scholar 

  49. Fineschi V (2015) Measuring myocyte oxidative stress and targeting cytokines to evaluate inflammatory response and cardiac repair after myocardial infarction. Curr Vasc Pharmacol 13(1):3–5

    Article  PubMed  Google Scholar 

  50. Seeley EH, Caprioli RM (2012) 3D imaging by mass spectrometry: a new frontier. Anal Chem 84(5):2105–2110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Crecelius AC, Cornett DS, Caprioli RM, Williams B, Dawant BM, Bodenheimer B (2005) Three-dimensional visualization of protein expression in mouse brain structures using imaging mass spectrometry. J Am Soc Mass Spectrom 16(7):1093–1099

    Article  CAS  PubMed  Google Scholar 

  52. Andersson M, Groseclose MR, Deutch AY, Caprioli RM (2008) Imaging mass spectrometry of proteins and peptides: 3D volume reconstruction. Nat Methods 5(1):101–108

    Article  CAS  PubMed  Google Scholar 

  53. Oetjen J, Veselkov K, Watrous J, McKenzie JS, Becker M, Hauberg-Lotte L, Kobarg JH, Strittmatter N, MrĂ³z AK, Hoffmann F, Trede D, Palmer A, Schiffler S, Steinhorst K, Aichler M, Goldin R, Guntinas-Lichius O, von Eggeling F, Thiele H, Maedler K, Walch A, Maass P, Dorrestein PC, Takats Z, Alexandrov T (2015) Benchmark datasets for 3D MALDI-and DESI-imaging mass spectrometry. Gigascience 4:20

    Article  PubMed  PubMed Central  Google Scholar 

  54. Patterson NH, Doonan RJ, Daskalopoulou SS, Dufresne M, Lenglet S, Montecucco F, Thomas A, Chaurand P (2016) Three-dimensional imaging MS of lipids in atherosclerotic plaques: open-source methods for reconstruction and analysis. Proteomics 16(11–12):1642–1651

    Article  CAS  PubMed  Google Scholar 

  55. Sinha TK, Khatib-Shahidi S, Yankeelov TE et al (2008) Integrating spatially resolved three-dimensional MALDI IMS with in vivo magnetic resonance imaging. Nat Methods 5(1):57–59

    Article  CAS  PubMed  Google Scholar 

  56. Oetjen J, Aichler M, Trede D et al (2013) MRI-compatible pipeline for three-dimensional MALDI imaging mass spectrometry using PAXgene fixation. J Proteomics 90:52–60

    Article  CAS  PubMed  Google Scholar 

  57. Michaud K, Grabherr S, Doenz F, Mangin P (2012) Evaluation of postmortem MDCT and MDCT-angiography for the investigation of sudden cardiac death related to atherosclerotic coronary artery disease. Int J Cardiovasc Imaging 28(7):1807–1822

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aurélien Thomas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bararpour, N., Sporkert, F., Augsburger, M., Thomas, A. (2017). Omics in Forensic Toxicology a Bridge Towards Forensic Medicine. In: Ferrara, S. (eds) P5 Medicine and Justice. Springer, Cham. https://doi.org/10.1007/978-3-319-67092-8_31

Download citation

Publish with us

Policies and ethics