Omics and Functional Imaging in Antisocial Behavior

  • Pietro Pietrini
  • Giuseppina Rota
  • Silvia Pellegrini


Recent advancements in molecular biology have permitted to broad the possibilities already achieved by morphological and functional imaging (PET and fMRI), highlighting not only the brain areas, but also the cerebral circuits and molecules that modulate human violent behavior . Through the omic sciences, epigenetic mechanisms (e.g. Hyper-methylation of MAO-A gene) and genetic variants that are capable of promoting violent and/or aggressive behaviors in subjects exposed to traumatic adverse events have been highlighted. These findings open up important forensic psychiatric perspectives on the use of omic science data to support the conclusions about partial or complete insanity of defendants, igniting a vivid debate about the use of neuroscientific evidence in court.


  1. 1.
    Cleckley HM (1988) The mask of sanity, 5th edn. Emily S Cleckley, Augusta, GeorgiaGoogle Scholar
  2. 2.
    Pietrini P, Guazzelli M, Basso G, Jaffe K, Grafman J (2000) Neural correlates of imaginal aggressive behavior assessed by positron emission tomography in healthy subjects. Am J Psychiatry 157(11):1772–1781CrossRefPubMedGoogle Scholar
  3. 3.
    Pietrini P, Bambini V (2009) Homo Ferox: the contribution of functional brain studies to understanding the neural bases of aggressive and criminal behavior. Int J Law Psychiatry 32:259–265CrossRefPubMedGoogle Scholar
  4. 4.
    Boccardi M, Frisoni GB, Hare RD, Cavedo E, Najt P, Pievani M, Rasser PE, Laakso MP, Aronen HJ, Repo-Tiihonen E, Vaurio O, Thompson PM, Tiihonen J (2011) Cortex and amygdala morphology in psychopathy. Psychiatry Res 193(2):85–92CrossRefPubMedGoogle Scholar
  5. 5.
    Ermer E, Cope LM, Nyalakanti PK, Calhoun VD, Kiehl KA (2013) Aberrant paralimbic gray matter in incarcerated male adolescents with psychopathic traits. J Am Acad Child Adolesc Psychiatry 52(1):94–103CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Iofrida C, Palumbo S, Pellegrini S (2014) Molecular genetics and antisocial behavior: where do we stand? Exp Biol Med (Maywood) 239(11):1514–1523CrossRefGoogle Scholar
  7. 7.
    Harlow JM (1848) Passage of an iron rod through the head. Boston Med Surg J 39:389–393CrossRefGoogle Scholar
  8. 8.
    Burt SA (2009) Are there meaningful etiological differences within antisocial behavior? Results of a meta-analysis. Clin Psychol Rev 29:163–178Google Scholar
  9. 9.
    Tuvblad C, Baker LA (2011) Human aggression across the lifespan: geneticpropensities and environmental moderators. Adv Genet 75:171–214PubMedPubMedCentralGoogle Scholar
  10. 10.
    Waltes R, Chiocchetti AG, Freitag CM (2016) The neurobiological basis of human aggression: a review on genetic and epigenetic mechanisms. Am J Med Genet B Neuropsychiatr Genet 171(5):650–675CrossRefPubMedGoogle Scholar
  11. 11.
    Rota G, Pellegrini S, Pietrini P (2014) The antisocial brain: novel insights from Neuroscience and molecular biology. Politica e Società 2:201–220. doi: 10.4476/77100Google Scholar
  12. 12.
    Pellegrini S, Pietrini P (2013) Il comportamento umano tra geni e ambiente: nuove acquisizioni dalla genetica molecolare. In: Bianchi A (ed) Collana di Psicologia Applicata: L’esame neuropsicologico dell’adulto, applicazioni cliniche e forensi. Giunti O.S, Editore, pp 25–36Google Scholar
  13. 13.
    Pellegrini S (2009) Il ruolo dei fattori genetici nella modulazione del comportamento: le nuove acquisizione della biologia molecolare genetica. In: Bianchi A, Gullotta G, Sartori G (eds) Manuale di Neuroscienze Forensi. Giuffrè Editore, Milano, p 69–90Google Scholar
  14. 14.
    Pellegrini S, Pietrini P (2010) Siamo davvero liberi? Il comportamento tra geni e cervello. Sistemi Intelligenti 22:281–293Google Scholar
  15. 15.
    Pietrini P, Pellegrini S (2010) Verso un’etica molecolare? G Ital di Psicologia 4:841–846Google Scholar
  16. 16.
    Pellegrini S (2003) Il ruolo della Biologia Molecolare nello studio della psicopatologia nell’era post-genomica. Probl Psichiatria 30:5–14Google Scholar
  17. 17.
    Cicchetti D, Rogosch FA, Thibodeau EL (2012) The effects of child maltreatment on early signs of antisocial behavior: genetic moderation by tryptophan hydroxylase, serotonin transporter, and monoamine oxidase A genes. Dev Psychopathol 24(3):907–928CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Pellegrini S (2015) Behavioral genetics in criminal trials: where do we stand?. International Academy of Law and Mental Health Meeting, ViennaGoogle Scholar
  19. 19.
    Rea IM, Dellet M, Mills KI; ACUME2 Project (2016) Living long and ageing well: is epigenomics the missing link between nature and nurture? Biogerontology 17(1):33–54CrossRefGoogle Scholar
  20. 20.
    Yang BZ, Zhang H, Ge W, Weder N, Douglas-Palumberi H, Perepletchikova F, Gelernter J, Kaufman J (2013) Child abuse and epigenetic mechanisms of disease risk. Am J Prev Med 44(2):101–107CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Tamatea AJ (2015) ‘Biologizing’ Psychopathy: ethical, Legal, and Research Implications at the Interface of Epigenetics and Chronic Antisocial Conduct. Behav Sci Law 33(5):629–643CrossRefPubMedGoogle Scholar
  22. 22.
    Beach SR et al (2013) Impact of child sex abuse on adult psychopathology: a genetically and epigenetically informed investigation. J Fam Psychol 27(1):3–11CrossRefPubMedGoogle Scholar
  23. 23.
    Checknita D, Maussion G, Labonté B, Comai S, Tremblay RE, Vitaro F, Turecki N, Bertazzo A, Gobbi G, Côté G, Turecki G (2015) Monoamine oxidase A gene promoter methylation and transcriptional downregulation in an offender population with antisocial personality disorder. Br J Psychiatry 206(3):216–222CrossRefPubMedGoogle Scholar
  24. 24.
    Sartori G, Pellegrini S, Mechelli A (2011) Forensic neurosciences: from basic research to applications and pitfalls. Curr Opin Neurol 24:371–377CrossRefPubMedGoogle Scholar
  25. 25.
    Turone F (2011) Medical tests help reduce sentence of woman accused of murder. BMJ 343:d5761CrossRefGoogle Scholar
  26. 26.
    Belsky J, Jonassaint C, Pluess M et al (2009) Vulnerability genes or plasticity genes? Mol Psychiatry 14:746–754CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Simons RL, Lei MK, Beach SR et al (2011) Social Environmental Variation, Plasticity Genes, and Aggression: evidence for the Differential Susceptibility Hypothesis. Am Sociol Rev 76:833–912CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Reuter M, Frenzel C, Walter NT, Markett S, Montag C (2011) Investigating the genetic basis of altruism: the role of the COMT Val158Met polymorphism. Soc Cogn Affect Neurosci 6(5):662–668CrossRefPubMedGoogle Scholar
  29. 29.
    Pappa I, St Pourcain B, Benke K et al (2016) A genome-wide approach to children’s aggressive behavior: the EAGLE consortium. Am J Med Genet B Neuropsychiatr Genet 171(5):562–572CrossRefPubMedGoogle Scholar
  30. 30.
    Mick E, McGough J, Deutsch CK, Frazier JA, Kennedy D, Goldberg RJ, Reif A (2014) Genome-wide association study of proneness to anger. PLoSONE 9:e87257CrossRefGoogle Scholar
  31. 31.
    Tiihonen J, Rautiainen M, Ollila HM, Repo-Tiihonen E, Virkkunen M, Palotie A, Pietil€ainen O, Kristiansson K, Joukamaa M, Lauerma H, Saarela J, Tyni S, Vartiainen H, Paananen J, Goldman D, Paunio T (2015) Genetic background of extreme violent behavior. Mol Psychiatry 20:786–792Google Scholar
  32. 32.
    Meyer-Lindenberg A, Buckholtz JW, Kolachana B, Hariri AR, Pezawas L, Blasi G, Wabnitz A, Honea R, Verchinski B, Callicott JH, Egan M, Mattay V, Weinberger DR (2006) Neural mechanisms of genetic risk for impulsivity and violence in humans. Proc Natl Acad Sci 103(16):6269–6274Google Scholar
  33. 33.
    Rigoni D, Pellegrini S, Mariotti V et al (2010) How neuroscience and behavioral genetics improve psychiatric assessment: report on a violent murder case. Front Behav Neurosci 4:160CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Feresin E (2009) Lighter sentence for murderer with “bad” genes. Accessed 30 Oct 2009
  35. 35.
    Feresin E (2011) Italian court reduces murder sentence based on imaging data. Accessed 1 Sep 2011
  36. 36.
    Bernardi G, Siclari F, Yu X, Zennig C, Bellesi M, Ricciardi E, Cirelli C, Ghilardi MF, Pietrini P, Tononi G (2015) Neural and behavioral correlates of extended training during sleep deprivation in humans: evidence for local, task-specific effects. J Neurosci 35(11):4487–4500. doi: 10.1523/JNEUROSCI.4567-14.2015CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Bernardi G, Cecchetti L, Siclari F, Buchmann A, Yu X, Handjaras G, Bellesi M, Ricciardi E, Kecskemeti SR, Riedner BA, Alexander AL, Benca RM, Ghilardi MF, Pietrini P, Cirelli C, Tononi G (2016) Sleep reverts changes in human gray and white matter caused by wake-dependent training. Neuroimage 129:367–377. doi: 10.1016/j.neuroimage.2016.01.020CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Pietrini P (2003) Toward a biochemistry of mind? Am J Psychiatry 160(11):1907–1908CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  • Pietro Pietrini
    • 1
  • Giuseppina Rota
    • 2
  • Silvia Pellegrini
    • 3
  1. 1.IMT School for Advanced StudiesLuccaItaly
  2. 2.Clinical Psychology BranchPisa University HospitalPisaItaly
  3. 3.Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly

Personalised recommendations