Skip to main content

Flame Retardancy of Natural Fibers Reinforced Composites

  • Chapter
  • First Online:
Towards Bio-based Flame Retardant Polymers

Part of the book series: SpringerBriefs in Molecular Science ((BRIEFSBP))

Abstract

Due to numerous advantages (high specific mechanical properties, low density, biosourcing, …), natural fibers from plants are considered as credible alternatives to glass or carbon fibers for composites industry. Nevertheless, their relatively high flammability limits their potential applications. Many researches have been carried out to improve the flame retardancy of composites reinforced with natural fibers. This chapter attempts to establish the state-of-art of these researches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mngomezulu M, John M, Jacobs V, Luyt A (2014) Review on flammability of biofibres and biocomposites. Carbohyd Polym 111:149–182

    Article  Google Scholar 

  2. Prabhakar M, Rehaman Shah A, Song J-I (2015) A review on the flammability and flame retardant properties of natural fibers and polymer matrix based composites. Compos Res 28:29–39

    Article  Google Scholar 

  3. Kozlowski R, Wladyka-Przybylak M (2008) Flammability and fire resistance of composites reinforced by natural fibers. Polym Adv Technol 19:446–453

    Article  Google Scholar 

  4. Azwa Z, Yousif B, Manalo A, Karunasena W (2013) A review on the degradability of polymeric composites based on natural fibres. Mater Des 47:424–442

    Article  Google Scholar 

  5. Chapple S, Anandjiwala R (2010) Flammability of natural fiber-reinforced composites and strategies for fire retardancy: a review. J Thermoplast Compos Mater 23:871–893

    Article  Google Scholar 

  6. Kim J, Pal K (2010) Flammability in WPC composites, chapter 6. In: Recent advances in the processing of wood-plastic composites. Engineering materials, vol 32. Springer, pp 129–147

    Google Scholar 

  7. Dao D, Rogaume T, Luche J, Richard F, Bustamante Valencia L, Ruban S (2016) Thermal degradation of epoxy resin/carbon fiber composites: influence of carbon fiber fraction on the fire reaction properties and on the gaseous species release. Fire Mater 40:27–47

    Google Scholar 

  8. Casu A, Camino G, Luda M, De Giorgi M (1993) Mechanisms of fire retardance in glass fibre polymer composites. Makromol Chem Macromol Symp 74:307–310

    Article  Google Scholar 

  9. Kandola B, Toqueer-Ul-Haq R (2012) The effect of fibre content on the thermal and fire performance of polypropylene-glass composites. Fire Mater 36:603–613

    Article  Google Scholar 

  10. Köppl T, Brehme S, Wolff-Fabris F, Alstädt V, Schartel B, Döring M (2012) Structure-property relationships of halogen-free flame-retarded poly(butylene terephthalate) and glass fiber reinforced PBT. J Appl Polym Sci 124:9–18

    Article  Google Scholar 

  11. Casu A, Camino G, De Giorgi M, Flath D, Laudi A, Morone V (1998) Effect of glass fibres and fire retardant on the combustion behaviour of composites, glass fibres-poly(butylene terephtalate). Fire Mater 22:7–14

    Article  Google Scholar 

  12. Vahabi H, Lopez-Cuesta JM, Chivas C (2017) High performance flame retardant polyamide materials, chap 6. In: De-Yi Wang (ed) Novel flame retardant polymers and composite materials. Woodhead Publishing

    Google Scholar 

  13. Liu L, Liu Y, Han Y, Liu Y, Wang Q (2015) Interfacial charring method to overcome the wicking action in glass fiber-reinforced polypropylene composite. Compos Sci Technol 121:9–15

    Article  Google Scholar 

  14. Liu J, Guo Y, Zhang Y, Liu H, Peng S, Pan B, Ma J, Niu Q (2016) Thermal conduction and fire property of glass fiber-reinforced high impact polystyrene/magnesium hydroxide/microencapsulated red phosphorus composite. Polym Degrad Stab 129:180–191

    Article  Google Scholar 

  15. Perret B, Schartel B, Stöb K, Ciesielski M, Diederichs J, Döring M, Krämer J, Altstädt V (2011) A New Halogen-free flame retardant based on 9,10-Dihydro-9-oxa-10-phosphaphenanthrene-10-oxide for epoxy resins and their carbon fiber composites for the automotive and aviation industries. Macromol Mater Eng 296:14–30

    Article  Google Scholar 

  16. Hopkins D, Quintiere J (1996) Material fire properties and predictions for thermoplastics. Fire Saf J 26:241–268

    Article  Google Scholar 

  17. Patel P, Hull R, Stec A, Lyon R (2011) Influence of physical properties on polymer flammability in the cone calorimeter. Polym Adv Technol 22:1100–1107

    Article  Google Scholar 

  18. Levchik S, Camino G, Costa L, Luda M (1996) Mechanistic study of thermal behavior and combustion performance of carbon fibre-epoxy resin composites fire retarded with a phosphorus-based curing system. Polym Degrad Stab 54:317–322

    Article  Google Scholar 

  19. Braun U, Balabanovich A, Schartel B, Knoll U, Artner J, Ciesielski M, Döring M, Perez R, Sandler J, Altstädt V, Hoffmann T, Pospiech D (2006) Influence of the oxidation state of phosphorus on the decomposition and fire behavior of flame-retarded epoxy resin composites. Polymer 47:8495–8508

    Article  Google Scholar 

  20. Zhang K, Zong L, Tan Y, Ji Q, Yun W, Shi R, Xia Y (2016) Improve the flame retardancy of cellulose fibers by grafting zinc ion. Carbohyd Polym 136:121–127

    Article  Google Scholar 

  21. Chai M, Bickerton S, Bhattacharyya D, Das R (2012) Influence of natural fibre reinforcements on the flammability of bio-derived composite materials. Compos B 43:2867–2874

    Article  Google Scholar 

  22. Annie Paul S, Boudenne A, Ibos L, Candau Y, Joseph K, Thomas S (2008) Effect of fiber loading and chemical treatments on thermophysical properties of banana fiber/polypropylene commingled composite materials. Compos A 39:1582–1588

    Article  Google Scholar 

  23. Idicula M, Boudenne A, Umadevi L, Ibos L, Candau Y, Thomas S (2006) Thermophysical properties of natural fibre reinforced polyester composites. Compos Sci Technol 66:2719–2725

    Article  Google Scholar 

  24. Du S-I, Lin X-B, Jian R-K, Deng C, Wang Y-Z (2015) Flame-retardant wrapped ramie fibers towards suppressing “candlewick effect” of Polypropylene/Ramie fiber composites. Chin J Polym Sci 33:84–94

    Article  Google Scholar 

  25. Yao F, Wu Q, Lei Y, Guo W, Xu Y (2008) Thermal decomposition kinetics of natural fibers: activation energy with dynamic thermogravimetric analysis. Polym Degrad Stab 93:90–98

    Article  Google Scholar 

  26. Horrocks A (1983) An introduction to the burning behaviour of cellulosic fibres. J Soc Dye Colour 99:191–197

    Article  Google Scholar 

  27. Sonnier R, Otazaghine B, Viretto A, Apolinario G, Ienny P (2015) Improving the flame retardancy of flax fabrics by radiation grafting of phosphorus compounds. Eur Polym J 68:313–325

    Article  Google Scholar 

  28. Müssig J, Fischer H, Graupner N, Drieling A (2010) Testing methods for measuring physical and mechanical fibre properties (plant and animal fibres). In: Müssig J (ed) Industrial applications of natural fibres: structure, properties and technical applications. Wiley, New York, pp 269–309

    Google Scholar 

  29. Wahab R, Mustafa M, Sudin M, Mohamed A, Rahman S, Samsi H, Khalid I (2013) Extractives, Holocellulose, α-Cellulose, Lignin and Ash Contents in Cultivated Tropical Bamboo Gigantochloa brang, G. levis, G. scortechinii and G. wrayi. J Biol Sci 5:266–272

    Google Scholar 

  30. John M, Anandjiwala R (2008) Recent developments in chemical modification and characterization of natural fiber-reinforced composites. Polym Compos 29:187–207

    Article  Google Scholar 

  31. Dorez G, Ferry L, Sonnier R, Taguet A, Lopez-Cuesta J-M (2014) Effect of cellulose, hemicellulose and lignin contents on pyrolysis and combustion of natural fibers. J Anal Appl Pyrol 107:323–331

    Article  Google Scholar 

  32. Hosoya T, Kawamoto H, Saka S (2007) Cellulose-hemicellulose and cellulose-lignin interactions in wood pyrolysis at gasification temperature. J Anal Appl Pyrol 80:118–125

    Article  Google Scholar 

  33. Rodrig H, Basch A, Lewin M (1975) Crosslinking and pyrolytic behavior of natural and man-made cellulosic fibers. J Poly Sci 13:1921–1932

    Google Scholar 

  34. Lewin M (2005) Unsolved problems and unanswered questions in flame retardance of polymers. Polym Degrad Stab 88:13–19

    Article  Google Scholar 

  35. Dorez G, Taguet A, Ferry L, Lopez-Cuesta J-M (2013) Thermal and fire behavior of natural fibers/PBS biocomposites. Polym Degrad Stab 98:87–95

    Article  Google Scholar 

  36. Kumar R, Anandjiwala R (2013) Compression-moulded flax fabric-reinforced polyfurfuryl alcohol bio-composites. J Therm Anal Calorim 112:755–760

    Article  Google Scholar 

  37. Li N, Yan H, Xia L, Mao L, Fang Z, Song Y, Wang H (2015) Flame retarding and reinforcing modification of ramie/polybenzoxazine composites by surface treatment of ramie fabric. Compos Sci Technol 121:82–88

    Article  Google Scholar 

  38. Wang K, Addiego F, Laachachi A, Kaouache B, Bahlouli N, Toniazzo V, Ruch D (2014) Dynamic behavior and flame retardancy of HDPE/hemp short fiber composites: effect of coupling agent and fiber loading. Compos Struct 113:74–82

    Article  Google Scholar 

  39. Mohanty S, Nayak S (2015) A study on thermal degradation kinetics and flammability properties of poly(lactic acid)/banana fiber/nanoclay hybrid bionanocomposites. Poly Compos 16

    Google Scholar 

  40. Subasinghe A, Das R, Bhattacharyya D (2016) Parametric analysis of flammability performance of polypropylene/kenaf composites. J Mater Sci 51:2101–2111

    Article  Google Scholar 

  41. Bocz K, Szolnoki B, Marosi A, Tabi T, Wladyka-Przybylak M, Marosi G (2014) Flax fibre reinforced PLA/TPS biocomposites flame retarded with multifunctional additive system. Polym Degrad Stab 106:63–73

    Article  Google Scholar 

  42. Jeencham R, Supparkarn N, Jarukumjorn K (2014) Effect of flame retardants on flame retardant, mechanical, and thermal properties of sisal fiber/polypropylene composites. Compos B 56:249–253

    Article  Google Scholar 

  43. Szolnoki B, Bocz K, Soti P, Bodzay B, Zimonyi E, Toldy A, Morlin B, Bujnowicz K, Wladyka-Przybylak M, Marosi G (2015) Development of natural fibre reinforced flame retarded epoxy resin composites. Polym Degrad Stab 119:68–76

    Article  Google Scholar 

  44. Sudhakara P, Kannan P, Obireddy K, Rajulu AV (2011) Flame retardant diglycidylphenylphosphate and diglycidyl ether of bisphenol-A resins containing Borassus fruit fiber composites. J Mater Sci 46:5176–5183

    Article  Google Scholar 

  45. Sain M, Park S, Suhara F, Law S (2004) Flame retardant and mechanical properties of natural fibre-PP composites containing magnesium hydroxide. Polym Degrad Stab 83:363–367

    Article  Google Scholar 

  46. Shumao L, Jie R, Hua Y, Tao Y, Weizhong Y (2010) Influence of ammonium polyphosphate on the flame retardancy and mechanical properties of ramie fiber-reinforced poly(lactic acid) biocomposites. Polym Int 59:242–248

    Google Scholar 

  47. Schartel B, Braun U, Schwarz U, Reinemann S (2003) Fire retardancy of polypropylene/flax blends. Polymer 44:6241–6250

    Article  Google Scholar 

  48. Nie S, Liu X, Dai G, Yuan S, Cai F, Li B, Hu Y (2012) Investigation on flame retardancy and thermal degradation of flame retardant poly(butylene succinate)/ bamboo fiber biocomposites. J Appl Polym Sci 125:485–489

    Article  Google Scholar 

  49. Cogen J, Lin T, Lyon R (2009) Correlations between pyrolysis combustion flow calorimetry and conventional flammability tests with halogen-free flame retardant polyolefin compounds. Fire Mater 33:33–50

    Article  Google Scholar 

  50. Suardana N, Ku M, Lim J (2011) Effects of diammonium phosphate on the flammability and mechanical properties of bio-composites. Mater Des 32:1990–1999

    Article  Google Scholar 

  51. Manfredi L, Rodriguez E, Wladyka-Przybylak M, Vazquez A (2006) Thermal degradation and fire resistance of unsaturated polyester, modified acrylic resins and their composites with natural fibres. Polym Degrad Stab 91:255–261

    Article  Google Scholar 

  52. Shukor F, Hassan A, Islam M, Mokhtar M, Hasan M (2014) Effect of ammonium polyphosphate on flame retardancy, thermal stability and mechanical properties of alkali treated kenaf fiber filled PLA biocomposites. Mater Des 54:425–429

    Article  Google Scholar 

  53. Lilholt H, Lawther J (2000) Natural organic fibres. In: Kelly A, Zweben C (eds) Comprehensive composite materials, vol 6. Elsevier Science, pp 303–325

    Google Scholar 

  54. Alvarez V, Rodriguez E, Vazquez A (2006) Thermal degradation and decomposition of jute/vinylester composites. J Therm Anal Calorim 85:383–389

    Article  Google Scholar 

  55. De Chirico A, Armanini M, Chini P, Cioccolo G, Provasoli F, Audisio G (2003) Flame retardants for polypropylene based on lignin. Polym Degrad Stab 79:139–145

    Article  Google Scholar 

  56. Ferry L, Dorez G, Taguet A, Otazaghine B, Lopez-Cuesta J-M (2015) Chemical modification of lignin by phosphorus molecules to improve the fire behavior of polybutylene succinate. Polym Degrad Stab 113:135–143

    Article  Google Scholar 

  57. Zhang J, Fleury E, Chen Y, Brook M (2015) Flame retardant lignin-based silicone composites. RSC Advances 5:103907–103914

    Article  Google Scholar 

  58. Xing W, Yuan H, Zhang P, Yang H, Song L, Hu Y (2013) Functionalized lignin for halogen-free flame retardant rigid polyurethane foam: preparation, thermal stability, fire performance and mechanical properties. J Polym Res 20:234–245

    Article  Google Scholar 

  59. Chen F, Dai H, Dong X, Yang J, Zhong M (2011) Physical properties of lignin-based polypropylene blends. Polym Compos 32:1019–1025

    Article  Google Scholar 

  60. Dorez G, Otazaghine B, Taguet A, Ferry L, Lopez-Cuesta J-M (2014) Use of Py-GC/MS and PCFC to characterize the surface modification of flax fibres. J Anal Appl Pyrol 105:122–130

    Article  Google Scholar 

  61. El-Sabbagh A, Steuernagel L, Ziegmann G, Meiners D, Toepfer O (2014) Processing parameters and characterization of flax fibre reinforced engineering plastic composites with flame retardant fillers. Compos B 62:12–18

    Article  Google Scholar 

  62. Hapuarachchi T, Ren G, Fan M, Hogg P, Peijs T (2007) Fire retardancy of natural fibre reinforced sheet moulding compound. Appl Compos Mater 14:251–264

    Article  Google Scholar 

  63. Hapuarachchi T, Peijs T (2010) Multiwalled carbon nanotubes and sepiolite nanoclays as flame retardants for polylactide and its natural fibre reinforced composites. Compos A 41:954–963

    Article  Google Scholar 

  64. Rupper P, Gaan S, Salimova V, Heuberger M (2010) Characterization of chars obtained from cellulose treated with phosphoramidate flame retardants. J Anal Appl Pyrol 87:93–98

    Article  Google Scholar 

  65. Subasinghe A, Bhattacharyya D (2014) Performance of different intumescent ammonium polyphosphate flame retardants in PP/kenaf fibre composites. Compos A 65:91–99

    Article  Google Scholar 

  66. Le Bras M, Duquesne S, Fois M, Grisel M, Poutch F (2005) Intumescent polypropylene/flax blends: a preliminary study. Polym Degrad Stab 88:80–84

    Article  Google Scholar 

  67. Dorez G, Taguet A, Ferry L, Lopez-Cuesta J-M (2014) Phosphorous compounds as flame retardants for polybutylene succinate/flax biocomposite: additive versus reactive route. Polym Degrad Stab 102:152–159

    Article  Google Scholar 

  68. Yu T, Jiang N, Li Y (2014) Functionalized multi-walled carbon nanotube for improving the flame retardancy of ramie/poly(lacic acid) composite. Compos Sci Technol 104:26–33

    Article  Google Scholar 

  69. Reti C, Casetta M, Duquesne S, Bourbigot S, Delobel R (2008) Flammability properties of intumescent PLA including starch and lignin. Polym Adv Technol 19:628–635

    Article  Google Scholar 

  70. Nie S, Liu X, Wu K, Dai G, Hu Y (2013) Intumescent flame retardation of polypropylene/bamboo fiber semi-biocomposites. J Therm Anal Calorim 111:425–430

    Article  Google Scholar 

  71. Li X, Tabil S, Panigrahi S (2007) Chemical treatments of natural fibers for use in natural fiber-reinforced composites: a review. J Polym Environ 15:25–33

    Article  Google Scholar 

  72. Biswal M, Mohanty S, Nayak S (2012) Thermal stability and flammability of banana-fiber-reinforced polypropylene nanocomposites. J Appl Polym Sci 125:432–443

    Article  Google Scholar 

  73. Zhang Z, Zhang J, Lu B-X, Xin Z, Kang C, Kim J (2012) Effect of flame retardants on mechanical properties, flammability and foamability of PP/wood-fiber composites. Compos B 43:150–158

    Article  Google Scholar 

  74. Gallo E, Schartel B, Acierno D, Cimino F, Russo P (2013) Tailoring the flame retardant and mechanical performances of natural fiber-reinforced biopolymer by multi-component laminate. Compos B 44:112–119

    Article  Google Scholar 

  75. Kandare E, Luangtriratana P, Kandola B (2014) Fire reaction properties of flax/epoxy laminates and their balsa-core sandwich composites with or without fire protection. Compos B 56:602–610

    Article  Google Scholar 

  76. Srinivasan V, Boopathy S, Sangeetha D, Ramnath B (2014) Evaluation of mechanical and thermal properties of banan-flax based natural fibre composite. Mater Des 60:620–627

    Article  Google Scholar 

  77. Rana A, Singha A (2014) Studies on the performance of polyester composites reinforced with functionalized Grewia optiva short fibers. Adv Polym Technol 33:21433–21443

    Article  Google Scholar 

  78. Nair K, Thomas S, Groeninckx G (2001) Thermal and dynamic mechanical analysis of polystyrene composites reinforced with short sisal fibres. Compos Sci Technol 61:2519–2529

    Article  Google Scholar 

  79. Matkó S, Toldy A, Keszei S, Anna P, Bertalan G, Marosi G (2005) Flame retardancy of biodegradable polymers and biocomposites. Polym Degrad Stab 88:138–145

    Article  Google Scholar 

  80. Jang JY, Jeong TK, Oh HJ, Youn JR, Song YS (2012) Thermal stability and flammability of coconut fiber reinforced poly(lactic acid) composites. Compos Eng 43:2434–2438

    Article  Google Scholar 

  81. Alongi J, Carosio F, Malucelli G (2014) Current emerging techniques to impart flame retardancy to fabrics: an overview. Polym Degrad Stab 106:138–149

    Article  Google Scholar 

  82. Fang F, Xiao D, Zhang X, Meng Y, Cheng C, Bao C, Ding X, Cao H, Tian X (2015) Construction of intumescent flame retardant and antimicrobial coating on cotton fabric via layer-by-layer assembly technology. Surf Coat Technol 276:726–734

    Article  Google Scholar 

  83. Fang F, Chen X, Zhang X, Cheng C, Xiao D, Meng Y, Ding X, Zhang H, Tian X (2016) Environmentally friendly assembly multilayer coating for flame retardant and antimicrobial cotton fabric. Prog Org Coat 90:258–266

    Article  Google Scholar 

  84. Carosio F, Negrell-Guirao C, Di Blasio A, Alongi J, David G, Camino G (2015) Tunable thermal and flame response of phosphonated oligoallylamines layer by layer assemblies on cotton. Carbohyd Polym 115:752–759

    Article  Google Scholar 

  85. Pan H, Song L, Hu Y, Liew KM (2015) An eco-friendly way to improve flame retardancy of cotton fabrics: layer-by-layer assembly of semi-biobased substance. Energy Procedia 75:174–179

    Article  Google Scholar 

  86. Wang L, Zhang T, Yan H, Peng M, Fang Z (2013) Modification of ramie fabric with a metal-ion-doped flame-retardant coating. J Appl Polym Sci 129:2986–2997

    Article  Google Scholar 

  87. Lin Z, Renneckar S, Hindman D (2008) Nanocomposite-based lignocellulosic fibers 1. Thermal stability of modified fibers with clay-polyelectrolyte multilayers. Cellulose 15:333–346

    Article  Google Scholar 

  88. Dorez G, Otazaghine B, Taguet A, Ferry L, Lopez-Cuesta J-M (2014) Improvement of the fire behavior of poly(1,4-butanediol succinate)/flax biocomposites by fiber surface modification with phosphorus compounds: molecular versus macromolecular strategy. Polym Int 63:1665–1673

    Article  Google Scholar 

  89. Zhou L, Ju Y, Liao F, Yang Y, Wang X (2016) Improve the mechanical property and flame retardant efficiency of the composites of poly(lactic acid) and resorcinol di(phenyl phosphate) (RDP) with ZnO-coated kenaf. Fire Mater 40:129–140

    Google Scholar 

  90. Misra R, Kumar S, Sandeep K, Misra A (2008) Some experimental and theoretical investigations on fire retardant coir/epoxy micro-composites. J Thermoplast Compos Mater 21:71–101

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodolphe Sonnier .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Cite this chapter

Sonnier, R., Taguet, A., Ferry, L., Lopez-Cuesta, JM. (2018). Flame Retardancy of Natural Fibers Reinforced Composites. In: Towards Bio-based Flame Retardant Polymers. SpringerBriefs in Molecular Science(). Springer, Cham. https://doi.org/10.1007/978-3-319-67083-6_3

Download citation

Publish with us

Policies and ethics