Skip to main content

Biobased Flame Retardants

  • Chapter
  • First Online:
Towards Bio-based Flame Retardant Polymers

Part of the book series: SpringerBriefs in Molecular Science ((BRIEFSBP))

Abstract

A great part of commercially available flame retardants are oil-derived organic compounds (e.g. organo-halogenated, organo-phosphorous, organo-nitrogen compounds). As part of oil-based products, they face the same issues: growing scarcity of petroleum, geopolitical problems, impact on global warning. Moreover some of these compounds (i.e. the halogenated compounds) have received a bad press because there are suspected to provoke specific health and environment concerns.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anastas PT, Warner JC (1998) Green chemistry: theory and practice. Oxford University Press, Oxford

    Google Scholar 

  2. Biron M (2011) Biobased additives and their future. http://polymer-additives.specialchem.com/tech-library/article/bio-based-additives-their-future

  3. Vassilev SV, Baxter D, Andersen LK, Vassileva CG (2010) An overview of the chemical composition of biomass. Fuel 89:913–933

    Article  Google Scholar 

  4. Dubois J-L (2012) Refinery of the future: feedstock, processes, products. In: Aresta M, Dibenedetto A, Dumeignil F (eds) Biorefinery: from biomass to chemicals and fuels. De Gruyter, Berlin, pp 19–47

    Google Scholar 

  5. Richmond PA (1991) Occurence and functions of native cellulose. In: Haigler CH, Weimer PF (eds) Biosynthesis and biodegradation of cellulose. Marcel Dekker, Inc., New-York, pp 5–23

    Google Scholar 

  6. Shen DK, Gu S (2009) The mechanism for thermal decomposition of cellulose and its main products. Bioresour Technol 100:6496–6504

    Article  Google Scholar 

  7. Dorez G, Ferry L, Sonnier R, Taguet A, Lopez-Cuesta JM (2014) Effect of cellulose, hemicellulose and lignin contents on pyrolysis and combustion of natural fibers. J Anal Appl Pyrolysis 107:323–331

    Article  Google Scholar 

  8. Zobel HF (1988) Molecules to granules: a comprehensive starch review. Starch/Stärke 40:44–50

    Article  Google Scholar 

  9. Liu X, Wang Y, Yu L, Tong Z, Chen L, Liu H, Li X (2013) Thermal degradation and stability of starch under different processing conditions. Starch/Staerke 65:48–60

    Article  Google Scholar 

  10. Logithkumar R, Keshavnarayan A, Dhivya S, Chawla A, Saravanan S, Selvamurugan N (2016) A review of chitosan and its derivatives in bone tissue engineering. Carbohydr Polym 151:172–188

    Article  Google Scholar 

  11. de Britto D, Campana-Filho SP (2007) Kinetics of the thermal degradation of chitosan. Thermochim Acta 465:73–82

    Article  Google Scholar 

  12. Moussout H, Ahlafi H, Aazza M, Bourakhouadar M (2016) Kinetics and mechanism of the thermal degradation of biopolymers chitin and chitosan using thermogravimetric analysis. Polym Degrad Stab 130:1–9

    Article  Google Scholar 

  13. McHugh DJ (2003) A guide to the seaweed industry, no. 441

    Google Scholar 

  14. Soares JP, Santos JE, Chierice GO, Cavalheiro ETG (2004) Thermal behavior of alginic acid and its sodium salt. Eclet Quim 29:57–63

    Article  Google Scholar 

  15. Kim JS, Pathak TS, Yun JH, Kim KP, Park TJ, Kim Y, Paeng KJ (2013) Thermal degradation and kinetics of alginate polyurethane hybrid material prepared from alginic acid as a polyol. J Polym Environ 21:224–232

    Article  Google Scholar 

  16. Anastasakis K, Ross AB, Jones JM (2011) Pyrolysis behaviour of the main carbohydrates of brown macro-algae. Fuel 90:598–607

    Article  Google Scholar 

  17. Whiteford D (2005) Proteins: structure and functions. Wiley, New York

    Google Scholar 

  18. Moldoveanu SC (1998) Chapter 12: Analytical pyrolysis of proteins. In: Techniques and instrumentation in analytical chemistry: analytical pyrolysis of natural organic polymers, vol 20. pp 373-397

    Google Scholar 

  19. Mocanu AM, Moldoveanu C, Odochian L, Paius CM, Apostolescu N, Neculau R (2012) Study on the thermal behavior of casein under nitrogen and air atmosphere by means of the TG-FTIR technique. Thermochim Acta 546:120–126

    Article  Google Scholar 

  20. Bates AD, Maxwell A (2005) DNA topology. Oxford University Press

    Google Scholar 

  21. Alongi J, Di Blasio A, Milnes J, Malucelli G, Bourbigot S, Kandola B, Camino G (2015) Thermal degradation of DNA, an all-in-one natural intumescent flame retardant. Polym Degrad Stab 113:110–118

    Article  Google Scholar 

  22. Christie WW, Han X (2012) Lipid analysis: isolation, separation, identification and lipidomic analysis. Woodhead Publishing Ltd, Cambridge

    Google Scholar 

  23. Fahy E, Subramaniam S, Brown HA, Glass CK, Merrill AH, Murphy RC, Raetz CRH, Russell DW, Seyama Y, Shaw W, Shimizu T, Spener F, van Meer G, VanNieuwenhze MS, White SH, Witztum JL, Dennis EA (2005) A comprehensive classification system for lipids. J Lipid Res 46:839–861

    Article  Google Scholar 

  24. Bedier AH, Hussein MF, Ismail EA, El-emary MM (2014) Jojoba and castor oils as fluids for the preparation of bio greases: a comparative study. Int J Sci Eng Res 5:755–762

    Google Scholar 

  25. The Oil Palm Wastes in Malaysia. World’s Largest Science. Technology & Medicine Open Access Book Publisher

    Google Scholar 

  26. Gouveia De Souza A, Oliveira Santos JC, Conceição MM, Dantas Silva MC, Prasad S (2004) A thermoanalytic and kinetic study of sunflower oil. Braz J Chem Eng 21:265–273

    Article  Google Scholar 

  27. Montero De Espinosa L, Meier MAR (2011) Plant oils: the perfect renewable resource for polymer science? Eur Polym J 47:837–852

    Article  Google Scholar 

  28. Romani A, Lattanzio V, Quideau S (2014) Recent advances in polyphenol research, vol 4. Wiley Blackwell, Oxford

    Google Scholar 

  29. Brebu M, Vasile C (2010) Thermal degradation of lignin—a review. Cellul Chem Technol 44:353–363

    Google Scholar 

  30. Gaugler M, Grigsby WJ (2009) Thermal degradation of condensed tannins from radiata pine bark. J Wood Chem Technol 29:305–321

    Article  Google Scholar 

  31. Camino G, Costa L, Luda di Cortemiglia MP (1991) Overview of fire retardant mechanisms. Polym Degrad Stab 33:131–154

    Article  Google Scholar 

  32. Laoutid F, Bonnaud L, Alexandre M, Lopez-Cuesta JM, Dubois P (2009) New prospects in flame retardant polymer materials: From fundamentals to nanocomposites. Mater Sci Eng R Rep 63:100–125

    Article  Google Scholar 

  33. Gallina G, Bravin E, Badalucco C, Audisio G, Armanini M, De Chirico A, Provasoli F (1998) Application of cone calorimeter for the assessment of class of flame retardants for polypropylene. Fire Mater 22:15–18

    Article  Google Scholar 

  34. De Chirico A, Armanini M, Chini P, Cioccolo G, Provasoli F, Audisio G (2003) Flame retardants for polypropylene based on lignin. Polym Degrad Stab 79:139–145

    Article  Google Scholar 

  35. Song P, Cao Z, Fu S, Fang Z, Wu Q, Ye J (2011) Thermal degradation and flame retardancy properties of ABS/lignin: Effects of lignin content and reactive compatibilization. Thermochim Acta 518:59–65

    Article  Google Scholar 

  36. Ferry L, Dorez G, Taguet A, Otazaghine B, Lopez-Cuesta JM (2014) Chemical modification of lignin by phosphorus molecules to improve the fire behavior of polybutylene succinate. Polym Degrad Stab 113:135–143

    Article  Google Scholar 

  37. Costes L, Laoutid F, Aguedo M, Richel A, Brohez S, Delvosalle C, Dubois P (2016) Phosphorus and nitrogen derivatization as efficient route for improvement of lignin flame retardant action in PLA. Eur Polym J 84:652–667

    Article  Google Scholar 

  38. Alongi J, Cuttica F, Bourbigot S, Malucelli G (2015) Thermal and flame retardant properties of ethylene vinyl acetate copolymers containing deoxyribose nucleic acid or ammonium polyphosphate. J Therm Anal Calorim 122:705–715

    Article  Google Scholar 

  39. Alongi J, Bosco F, Carosio F, Di Blasio A, Malucelli G (2014) A new era for flame retardant materials? Mater Today 17:152–153

    Article  Google Scholar 

  40. Malucelli G, Bosco F, Alongi J, Carosio F, Di A (2014) Biomacromolecules as novel green flame retardant systems for textiles: an overview. RSC Adv 4:46024–46039

    Article  Google Scholar 

  41. Bosco F, Carletto RA, Alongi J, Marmo L, Di Blasio A, Malucelli G (2013) Thermal stability and flame resistance of cotton fabrics treated with whey proteins. Carbohydr Polym 94:372–377

    Article  Google Scholar 

  42. Alongi J, Carletto RA, Bosco F, Carosio F, Di Blasio A, Cuttica F, Antonucci V, Giordano M, Malucelli G (2014) Caseins and hydrophobins as novel green flame retardants for cotton fabrics. Polym Degrad Stab 99:111–117

    Article  Google Scholar 

  43. Alongi J, Carletto RA, Di Blasio A, Carosio F, Bosco F, Malucelli G (2013) DNA: a novel, green, natural flame retardant and suppressant for cotton. J Mater Chem A 1:4779–4785

    Article  Google Scholar 

  44. Alongi J, Cuttica F, Di Blasio A, Carosio F, Malucelli G (2014) Intumescent features of nucleic acids and proteins. Thermochim Acta 591:31–39

    Article  Google Scholar 

  45. Alongi J, Milnes J, Malucelli G, Bourbigot S, Kandola B (2014) Thermal degradation of DNA-treated cotton fabrics under different heating conditions. J Anal Appl Pyrolysis 108:212–221

    Article  Google Scholar 

  46. Alongi J, Carletto RA, Di Blasio A, Cuttica F, Carosio F, Bosco F, Malucelli G (2013) Intrinsic intumescent-like flame retardant properties of DNA-treated cotton fabrics. Carbohydr Polym 96:296–304

    Article  Google Scholar 

  47. Bosco F, Casale A, Mollea C, Terlizzi ME, Gribaudo G, Alongi J, Malucelli G (2015) DNA coatings on cotton fabrics: effect of molecular size and pH on flame retardancy. Surf Coat Technol 272:86–95

    Article  Google Scholar 

  48. Carosio F, Di Blasio A, Alongi J, Malucelli G (2013) Green DNA-based flame retardant coatings assembled through layer by layer. Polymer 54:5148–5153 (United Kingdom)

    Article  Google Scholar 

  49. Carosio F, Cuttica F, Di Blasio A, Alongi J, Malucelli G (2015) Layer by layer assembly of flame retardant thin films on closed cell PET foams: efficiency of ammonium polyphosphate versus DNA. Polym Degrad Stab 113:189–196

    Article  Google Scholar 

  50. Alongi J, Di Blasio A, Cuttica F, Carosio F, Malucelli G (2014) Bulk or surface treatments of ethylene vinyl acetate copolymers with DNA: Investigation on the flame retardant properties. Eur Polym J 51:112–119

    Article  Google Scholar 

  51. Alongi J, Cuttica F, Carosio F, Applicata S, Torino P, Michel VT (2016) DNA coatings from byproducts: a panacea for the flame retardancy of EVA, PP, ABS, PET, and PA6? ACS Sustain Chem Eng 4:3544–3551

    Article  Google Scholar 

  52. Réti C, Casetta M, Duquesne S, Bourbigot S, Delobel R (2008) Flammability properties of intumescent PLA starch and lignin. Polym Adv Technol 19:628–635

    Article  Google Scholar 

  53. Wang X, Hu Y, Song L, Xuan S, Xing W, Bai Z, Lu H (2011) Flame retardancy and thermal degradation of intumescent flame retardant poly(lactic acid)/starch biocomposites. Ind Eng Chem Res 50:713–720

    Article  Google Scholar 

  54. Dupretz R, Fontaine G, Bourbigot S (2013) Fire retardancy of a new polypropylene-grafted starch: Part II: investigation of mechanisms. J Fire Sci 32:210–229

    Article  Google Scholar 

  55. Dupretz R, Fontaine G, Bourbigot S (2013) Fire retardancy of a new polypropylene-grafted starch. J Fire Sci 31:563–575

    Article  Google Scholar 

  56. Carosio F, Fontaine G, Alongi J, Bourbigot S (2015) Starch-based layer by layer assembly: efficient and sustainable approach to cotton fire protection. ACS Appl Mater Interfaces 7:12158–12167

    Article  Google Scholar 

  57. Carosio F, Alongi J, Malucelli G (2012) Layer by layer ammonium polyphosphate-based coatings for flame retardancy of polyester-cotton blends. Carbohydr Polym 88:1460–1469

    Article  Google Scholar 

  58. Alongi J, Carosio F, Malucelli G (2012) Layer by layer complex architectures based on ammonium polyphosphate, chitosan and silica on polyester-cotton blends: Flammability and combustion behaviour. Cellulose 19:1041–1050

    Article  Google Scholar 

  59. Jimenez M, Guin T, Bellayer S, Dupretz R, Bourbigot S, Grunlan JC (2016) Microintumescent mechanism of flame-retardant water-based chitosan-ammonium polyphosphate multilayer nanocoating on cotton fabric. J Appl Polym Sci 43783:1–12

    Google Scholar 

  60. Pan H, Song L, Ma L, Pan Y, Liew KM, Hu Y (2014) Layer-by-layer assembled thin films based on fully biobased polysaccharides: chitosan and phosphorylated cellulose for flame-retardant cotton fabric. Cellulose 21:2995–3006

    Article  Google Scholar 

  61. Pan H, Wang W, Pan Y, Song L, Hu Y, Liew KM (2015) Formation of self-extinguishing flame retardant biobased coating on cotton fabrics via Layer-by-Layer assembly of chitin derivatives. Carbohydr Polym 115:516–524

    Article  Google Scholar 

  62. Pan H, Song L, Hu Y, Liew KM (2015) An eco-friendly way to improve flame retardancy of cotton fabrics: layer-by-layer assembly of semi-biobased substance. Energy Procedia 75:174–179

    Article  Google Scholar 

  63. Pan H, Wang W, Pan Y, Zeng W, Zhan J, Song L, Hu Y, Liew KM (2015) Construction of layer-by-layer assembled chitosan/titanate nanotubes based nanocoating on cotton fabrics: flame retardant performance and combustion behavior. Cellulose 22:911–923

    Article  Google Scholar 

  64. Carosio F, Negrell-Guirao C, Alongi J, David G, Camino G (2015) All-polymer layer by layer coating as efficient solution to polyurethane foam flame retardancy. Eur Polym J 70:94–103

    Article  Google Scholar 

  65. Pan Y, Zhan J, Pan H, Wang W, Tang G, Song L, Hu Y (2016) Effect of fully biobased coatings constructed via layer-by-layer assembly of chitosan and lignosulfonate on the thermal, flame retardant, and mechanical properties of flexible polyurethane foam. ACS Sustain Chem Eng 4:1431–1438

    Article  Google Scholar 

  66. Zhang T, Yan H, Shen L, Fang Z, Zhang X, Wang J (2014) Chitosan/phytic acid polyelectrolyte complex: a green and renewable intumescent flame retardant system for ethylene–vinyl acetate copolymer. Ind Eng Chem Res 53:19199–19207

    Article  Google Scholar 

  67. Zhang T, Yan H, Shen L, Fang Z, Zhang X, Wang J, Zhang B (2014) A phosphorus-, nitrogen- and carbon-containing polyelectrolyte complex: preparation, characterization and its flame retardant performance on polypropylene. RSC Adv 4:48285–48292

    Article  Google Scholar 

  68. Alongi J, Pošsković M, Frache A, Trotta F (2010) Novel flame retardants containing cyclodextrin nanosponges and phosphorus compounds to enhance EVA combustion properties. Polym Degrad Stab 95:2093–2100

    Article  Google Scholar 

  69. Enescu D, Alongi J, Frache A (2012) Evaluation of nonconventional additives as fire retardants on polyamide 6,6: phosphorous-based master batch, α-zirconium dihydrogen phosphate, and β-cyclodextrin based nanosponges. J Appl Polym Sci 123:3545–3555

    Article  Google Scholar 

  70. Wang X, Xing W, Wang B, Wen P, Song L, Hu Y, Zhang P (2013) Comparative study on the effect of beta-cyclodextrin and polypseudorotaxane as carbon sources on the thermal stability and flame retardance of polylactic acid. Ind Eng Chem Res 52:3287–3294

    Article  Google Scholar 

  71. Wang B, Qian X, Shi Y, Yu B, Hong N, Song L, Hu Y (2014) Cyclodextrin microencapsulated ammonium polyphosphate: preparation and its performance on the thermal, flame retardancy and mechanical properties of ethylene vinyl acetate copolymer. Compos Part B Eng 69:22–30

    Article  Google Scholar 

  72. Qian W, Li XZ, Wu ZP, Liu YX, Fang CC, Meng W (2015) Formulation of intumescent flame retardant coatings containing natural-based tea saponin. J Agric Food Chem 63:2782–2788

    Article  Google Scholar 

  73. Wang N, Hu L, Babu HV, Zhang J, Fang Q (2017) Effect of tea saponin-based intumescent flame retardant on thermal stability, mechanical property and flame retardancy of natural rubber composites. J Therm Anal Calorim 128:1133–1142

    Article  Google Scholar 

  74. Cayla A, Rault F, Giraud S, Salaün F, Fierro V, Celzard A (2016) PLA with intumescent system containing lignin and ammonium polyphosphate for flame retardant textile. Polymers 8:331–346

    Article  Google Scholar 

  75. Tondi G, Wieland S, Wimmer T, Thevenon MF, Pizzi A, Petutschnigg A (2012) Tannin-boron preservatives for wood buildings: mechanical and fire properties. Eur J Wood Wood Prod 70:689–696

    Article  Google Scholar 

  76. Illy N, Fache M, Ménard R, Negrell C, Caillol S, David G (2015) Phosphorylation of bio-based compounds: the state of the art. Polym Chem 6:6257–6291

    Article  Google Scholar 

  77. Aoki D, Nishio Y (2010) Phosphorylated cellulose propionate derivatives as thermoplastic flame resistant/retardant materials: Influence of regioselective phosphorylation on their thermal degradation behaviour. Cellulose 17:963–976

    Article  Google Scholar 

  78. Pan H, Qian X, Ma L, Song L, Hu Y, Liew KM (2014) Preparation of a novel biobased flame retardant containing phosphorus and nitrogen and its performance on the flame retardancy and thermal stability of poly(vinyl alcohol). Polym Degrad Stab 106:47–53

    Article  Google Scholar 

  79. Costes L, Laoutid F, Khelifa F, Rose G, Brohez S, Delvosalle C, Dubois P (2016) Cellulose/phosphorus combinations for sustainable fire retarded polylactide. Eur Polym J 74:218–228

    Article  Google Scholar 

  80. Božič M, Liu P, Mathew AP, Kokol V (2014) Enzymatic phosphorylation of cellulose nanofibers to new highly-ions adsorbing, flame-retardant and hydroxyapatite-growth induced natural nanoparticles. Cellulose 21:2713–2726

    Article  Google Scholar 

  81. Hu S, Song L, Hu Y (2013) Preparation and characterization of chitosan-based flame retardant and its thermal and combustible behavior on polyvinyl alcohol. Polym Plast Technol Eng 52:393–399

    Article  Google Scholar 

  82. Hu S, Song L, Pan H, Hu Y (2013) Effect of a novel chitosan-based flame retardant on thermal and flammability properties of polyvinyl alcohol. J Therm Anal Calorim 112:859–864

    Article  Google Scholar 

  83. Hu S, Song L, Pan H, Hu Y (2012) Thermal properties and combustion behaviors of chitosan based flame retardant combining phosphorus and nickel. Ind Eng Chem Res 51:3663–3669

    Article  Google Scholar 

  84. Hu S, Song L, Pan H, Hu Y, Gong X (2012) Thermal properties and combustion behaviors of flame retarded epoxy acrylate with a chitosan based flame retardant containing phosphorus and acrylate structure. J Anal Appl Pyrolysis 97:109–115

    Article  Google Scholar 

  85. Howell BA, Carter KE, Dangalle H (2011) Flame retardants based on tartaric acid: a renewable by-product of the wine industry. ACS Symposium Series, chapter 9, pp 133–152

    Google Scholar 

  86. Howell BA, Carter KE (2010) Thermal stability of phosphinated diethyl tartrate. J Therm Anal Calorim 102:493–498

    Article  Google Scholar 

  87. Howell BA, Daniel YG (2015) Thermal degradation of phosphorus esters derived from isosorbide and 10-undecenoic acid. J Therm Anal Calorim 121:411–419

    Article  Google Scholar 

  88. Mauldin TC, Zammarano M, Gilman J, Shileds JR, Boday D (2014) Synthesis and characterization of isosorbide-based polyphosphonates as biobased flame-retardants. Polym Chem 5:5139–5146

    Article  Google Scholar 

  89. Liu Y, Wang JS, Zhu P, Zhao JC, Zhang CJ, Guo Y, Cui L (2016) Thermal degradation properties of biobased iron alginate film. J Anal Appl Pyrolysis 119:87–96

    Article  Google Scholar 

  90. Liu Y, Zhao XR, Peng YL, Wang D, Yang L, Peng H, Zhu P, Wang DY (2016) Effect of reactive time on flame retardancy and thermal degradation behavior of bio-based zinc alginate film. Polym Degrad Stab 127:20–31

    Article  Google Scholar 

  91. Zhang J, Ji Q, Shen X, Xia Y, Tan L, Kong Q (2011) Pyrolysis products and thermal degradation mechanism of intrinsically flame-retardant calcium alginate fibre. Polym Degrad Stab 96:936–942

    Article  Google Scholar 

  92. Liu Y, Zhang CJ, Zhao JC, Guo Y, Zhu P, Wang DY (2016) Bio-based barium alginate film: preparation, flame retardancy and thermal degradation behavior. Carbohydr Polym 139:106–114

    Article  Google Scholar 

  93. Costes L, Laoutid F, Dumazert L, Lopez-cuesta J-M, Brohez S, Delvosalle C, Dubois P (2015) Metallic phytates as efficient bio-based phosphorous flame retardant additives for poly(lactic acid). Polym Degrad Stab 119:217–227

    Article  Google Scholar 

  94. Yu Y, Fu S, Song P, Luo X, Jin Y, Lu F, Wu Q, Ye J (2012) Functionalized lignin by grafting phosphorus-nitrogen improves the thermal stability and flame retardancy of polypropylene. Polym Degrad Stab 97:541–546

    Article  Google Scholar 

  95. Prieur B, Meub M, Wittemann M, Klein R, Bellayer S, Fontaine G, Bourbigot S (2015) Phosphorylation of lignin to flame retard acrylonitrile butadiene styrene (ABS). Polym Degrad Stab 127:32–43

    Article  Google Scholar 

  96. Liu L, Huang G, Song P, Yu Y, Fu S (2016) Converting industrial alkali lignin to biobased functional additives for improving fire behavior and smoke suppression of polybutylene succinate. ACS Sustain Chem Eng 4:4732–4742

    Article  Google Scholar 

  97. Liu L, Qian M, Song P, Huang G, Yu Y, Fu S (2016) Fabrication of green lignin-based flame retardants for enhancing the thermal and fire retardancy properties of polypropylene/wood composites. ACS Sustain Chem Eng 4:2422–2431

    Article  Google Scholar 

  98. Zhang R, Xiao X, Tai Q, Huang H, Hu Y (2012) Modification of lignin and its application as char agent in intumescent flame-retardant poly(lactic acid). Polym Eng Sci 52:2620–2626

    Article  Google Scholar 

  99. Zhang R, Xiao X, Tai Q, Huang H, Yang J, Hu Y (2012) Preparation of lignin–silica hybrids and its application in intumescent flame-retardant poly(lactic acid) system. High Perform Polym 24:738–746

    Article  Google Scholar 

  100. Marosi G, Toldy A, Parlagh G, Nagy Z, Ludányi K, Anna P, Keglevich G (2002) A study on the selective phosphorylation and phosphinylation of hydroxyphenols. Heteroat Chem 13:126–130

    Article  Google Scholar 

  101. Vothi H, Nguyen C, Lee K, Kim J (2010) Thermal stability and flame retardancy of novel phloroglucinol based organo phosphorus compound. Polym Degrad Stab 95:1092–1098

    Article  Google Scholar 

  102. Ménard R, Negrell-Guirao C, Ferry L, Sonnier R, David G (2014) Synthesis of biobased phosphate flame retardants. Pure Appl Chem 86:1637–1650

    Article  Google Scholar 

  103. Ménard R, Negrell C, Fache M, Ferry L, Sonnier R, David G (2015) From a bio-based phosphorus-containing epoxy monomer to fully bio-based flame-retardant thermosets. RSC Adv 5:70856–70867

    Article  Google Scholar 

  104. Ménard R, Negrell C, Ferry L, Sonnier R, David G (2015) Synthesis of biobased phosphorus-containing flame retardants for epoxy thermosets comparison of additive and reactive approaches. Polym Degrad Stab 120:300–312

    Article  Google Scholar 

  105. Vahabi H, Sonnier R, Ferry L (2015) Effects of ageing on the fire behaviour of flame-retarded polymers: a review. Polym Int 64:313–328

    Article  Google Scholar 

  106. Lligadas G, Callau L, Ronda JC, Galià M, Cádiz V (2005) Novel organic-inorganic hybrid materials from renewable resources: hydrosilylation of fatty acid derivatives. J Polym Sci Part A: Polym Chem 43:6295–6307

    Article  Google Scholar 

  107. Lligadas G, Ronda JC, Gali M, Cdiz V, Galia M, Ca V (2006) Novel silicon-containing polyurethanes from vegetable oils as renewable resources. Synth Prop Biomacromolecules 7:2420–2426

    Article  Google Scholar 

  108. Lligadas G, Ronda JC, Galià M, Cádiz V (2006) Synthesis and properties of thermosetting polymers from a phosphorous-containing fatty acid derivative. J Polym Sci Part A: Polym Chem 44:5630–5644

    Article  Google Scholar 

  109. Lligadas G, Ronda JC, Galià M, Cádiz V (2006) Development of novel phosphorus-containing epoxy resins from renewable resources. J Polym Sci Part A: Polym Chem 44:6717–6727

    Article  Google Scholar 

  110. Heinen M, Gerbase AE, Petzhold CL (2014) Vegetable oil-based rigid polyurethanes and phosphorylated flame-retardants derived from epoxydized soybean oil. Polym Degrad Stab 108:76–86

    Article  Google Scholar 

  111. Zhang L, Zhang M, Hu L, Zhou Y (2014) Synthesis of rigid polyurethane foams with castor oil-based flame retardant polyols. Ind Crops Prod 52:380–388

    Article  Google Scholar 

  112. Pillai CKS, Prasad VS, Sudha JD, Bera SC, Menon ARR (1990) Polymeric resins from renewable resources. II. Synthesis and characterization of flame-retardant prepolymers from cardanol. J Appl Polym Sci 41:2487–2501

    Article  Google Scholar 

  113. Wan J, Gan B, Li C, Molina-Aldareguia J, Li Z, Wang X, Wang D-Y (2015) A novel biobased epoxy resin with high mechanical stiffness and low flammability: synthesis, characterization and properties. J Mater Chem A 3:21907–21921

    Article  Google Scholar 

  114. Thirukumaran P, Shakila Parveen A, Sarojadevi M (2014) Synthesis and copolymerization of fully biobased benzoxazines from renewable resources. ACS Sustain Chem Eng 2:2790–2801

    Article  Google Scholar 

  115. Ma S, Liu X, Jiang Y, Fan L, Feng J, Zhu J (2014) Synthesis and properties of phosphorus-containing bio-based epoxy resin from itaconic acid. Sci China Chem 57:379–388

    Article  Google Scholar 

  116. Michałowicz J, Duda W (2007) Phenols—Sources and toxicity. Polish J Environ Stud 16:347–362

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodolphe Sonnier .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Cite this chapter

Sonnier, R., Taguet, A., Ferry, L., Lopez-Cuesta, JM. (2018). Biobased Flame Retardants. In: Towards Bio-based Flame Retardant Polymers. SpringerBriefs in Molecular Science(). Springer, Cham. https://doi.org/10.1007/978-3-319-67083-6_2

Download citation

Publish with us

Policies and ethics