Skip to main content

Adaptive Motivation System Under Modular Reinforcement Learning for Agent Decision-Making Modeling of Biological Regulation

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10449))

Abstract

In this paper, an adaptive motivation system under modular reinforcement learning is suggested for agent decision-making modeling of biological regulation. For this purpose, first, main concepts of drives, rewards, action selection under modular reinforcement learning as well as an adaptive priority process are developed. Second, experiments and results are presented and analyzed demonstrating the efficiency of the suggested concepts. Finally, a discussion is given in conclusion with regard to related works. The obtained results demonstrate how the suggested adaptive motivation system can be used by an agent learning (on-line) to select appropriate actions, during a navigation task from a starting position to a goal position (external goal), i.e., in each moving step, in order to reach an external goal as well as to satisfy internal goals (drives such as hunger, thirst, …); predicting a promising result in future to demonstrate how the nature of the interaction (stimulation-drive, social-drive, …) influences the agent behavior.

This is a preview of subscription content, log in via an institution.

References

  1. Hull, C.L.: Principles of Behavior, An Introduction to Behavior Theory. D. Appleton-Century Co, New York (1943)

    Google Scholar 

  2. Singh, S., Lewis, R.L., Barto, A.G., Sorg, J.: Intrinsically motivated reinforcement learning: an evolutionary perspective. IEEE Trans. Auton. Ment. Dev. 2(2), 70–82 (2010)

    Article  Google Scholar 

  3. Halliday, T.: Motivation. In: Halliday, T.R., Slater, P.J.B. (eds.) Causes and Effects. Blackwell Scientific, Oxford (1983)

    Google Scholar 

  4. Cannon, W.B.: The Wisdom of the Body. W. W. Norton, New York (1932)

    Google Scholar 

  5. Savage, T.: Artificial motives: a review of motivation in artificial creatures. Connect. Sci. 12, 211–277 (2000)

    Article  Google Scholar 

  6. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge (1998)

    Google Scholar 

  7. Brooks, R.A.: The role of learning in autonomous robots. In: Proceedings of the Fourth Annual Workshop on Computational Learning Theory (COLT 1991), pp. 05–10 (1991)

    Chapter  Google Scholar 

  8. Chohra, A., Madani, K.: Biological regulation and psychological mechanisms models of adaptive decision-making behaviors: drives, emotions, and personality. In: Nguyen, N.-T., Manolopoulos, Y., Iliadis, L., Trawiński, B. (eds.) ICCCI 2016. LNCS, vol. 9875, pp. 412–422. Springer, Cham (2016). doi:10.1007/978-3-319-45243-2_38

    Chapter  Google Scholar 

  9. Warren, W.H.: The dynamics of perception and action. Psychol. Rev. 113(2), 358–389 (2006)

    Article  Google Scholar 

  10. Konidaris, G., Barto, A.: An adaptive robot motivational system. In: Nolfi, S., Baldassarre, G., Calabretta, R., Hallam, J.C.T., Marocco, D., Meyer, J.-A., Miglino, O., Parisi, D. (eds.) SAB 2006. LNCS, vol. 4095, pp. 346–356. Springer, Heidelberg (2006). doi:10.1007/11840541_29

    Chapter  Google Scholar 

  11. Breazeal, C., Brooks, R.A.: Robot emotion: a functional perspective. In: Fellous, J.-M., Arbib, M. (eds.) MIT Press, pp. 271–310 (2005)

    Chapter  Google Scholar 

  12. Berridge, K.C.: Rewards learning: reinforcement, incentives, and expectations. Psychol. Learn. Motiv. 40, 223–278 (2001). Academic Press

    Article  Google Scholar 

  13. Sprague, N., Ballard, D.: Multiple-goal reinforcement learning with modular Sarsa(0). Technical report 798, The University of Rochester (2004)

    Google Scholar 

  14. Bhat, S., Isbell Jr., C.L., Mateas, M.: On the difficulty of modular reinforcement learning for real-world partial programming. In: American Association Artificial Intelligence, pp. 318–323 (2006)

    Google Scholar 

  15. Humphrys, M.: Action selection methods using reinforcement learning. Ph.D. dissertation, University of Cambridge, Technical report (1997)

    Google Scholar 

  16. Karlsson, J.: Learning to solve multiple goals. Ph.D. thesis, University of Rochester (1997)

    Google Scholar 

  17. Cos, I., Canamero, L., Hayes, G.M., Gillies, A.: Hedonic value: enhancing adaptation for motivated agents. Adapt. Behav. 21(6), 465–483 (2013)

    Article  Google Scholar 

  18. Ashby, W.R.: Design for a Brain. Chapman & Hall, London (1952)

    MATH  Google Scholar 

  19. Meyer, J.-A.: Artificial life and the animat approach to artificial intelligence. Artif. Intell. (1995). Academic Press

    Google Scholar 

  20. Kompella, V.R., Kazerounian, S., Schmidhuber, J.: An anti-hebbian learning rule to represent drive motivations for reinforcement learning. In: del Pobil, A.P., Chinellato, E., Martinez-Martin, E., Hallam, J., Cervera, E., Morales, A. (eds.) SAB 2014. LNCS, vol. 8575, pp. 176–187. Springer, Cham (2014). doi:10.1007/978-3-319-08864-8_17

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amine Chohra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Chohra, A., Madani, K. (2017). Adaptive Motivation System Under Modular Reinforcement Learning for Agent Decision-Making Modeling of Biological Regulation. In: Nguyen, N., Papadopoulos, G., Jędrzejowicz, P., Trawiński, B., Vossen, G. (eds) Computational Collective Intelligence. ICCCI 2017. Lecture Notes in Computer Science(), vol 10449. Springer, Cham. https://doi.org/10.1007/978-3-319-67077-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67077-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67076-8

  • Online ISBN: 978-3-319-67077-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics