Development of a Sustainable Design Lexicon. Towards Understanding the Relationship Between Sentiments, Attitudes and Behaviours

  • Vargas Meza Xanat
  • Yamanaka Toshimasa
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10449)


Design education and practice have been deeply interlinked with industrialization throughout their history, but on recent years, global initiatives like the UN Sustainable Development Goals have challenged the conventional production and consumption models. Therefore, to understand the relationship between pro-environmental sentiments, attitudes and behaviours related to design, the present study proposes the development of a Sustainable Design lexicon. Through a combined method of semantic and sentiment analysis incorporating graphical symbols included in text based data, it is expected to uncover the psychological and contextual factors aiding the production and acceptance of Sustainable Design in developed and developing countries. The lexicon is expected to aid the development of an algorithm for video recommendations, which would improve creative people’s learning experience of complex and biological related content.


Sustainable design Social networks Semantic and sentiment analysis Machine learning Web systems development 



The authors wish to thank Akira Uno, Constantine Pavlides, Mike Thelwall and Roberto Franzosi.


  1. 1.
    Abrahamse, W., Steg, L., Vlek, C., Rothengatter, T.: A review of intervention studies aimed at household energy conservation. J. Environ. Psychol. 25(3), 273–291 (2005). doi: 10.1016/j.jenvp.2005.08.002CrossRefGoogle Scholar
  2. 2.
    Abrahamse, W., Steg, L., Vlek, C., Rothengatter, T.: The effect of tailored information, goal setting, and tailored feedback on household energy use, energy-related behaviors, and behavioral antecedents. J. Environ. Psychol. 27(4), 265–276 (2007). doi: 10.1016/j.jenvp.2007.08.002CrossRefGoogle Scholar
  3. 3.
    Ahn, H.: Modeling and analysis of affective influences on human experience, prediction, decision making, and behavior. Ph.D. dissertation, Massachusetts Institute of Technology (2010).
  4. 4.
    Borgatti, S.P., Everett, M.G., Freeman, L.C.: UCINET for windows: software for social network analysis. Analytic Technologies, Harvard (2002).
  5. 5.
    Bradley, M.M., Lang, P.J.: Affective norms for English words (ANEW): instruction manual and affective ratings. Technical report C-1, The Center for Research in Psychophysiology, University of Florida (1999).
  6. 6.
    Carter, C.M.: Sustainable consumption & sustainable design: moving sustainability theory towards design practice. Ph.D. dissertation, University of Texas (2013).
  7. 7.
    Chmiel, A., Sienkiewicz, J., Thelwall, M., Paltoglou, G., Buckley, K., Kappas, A., Hołyst, J.A.: Collective emotions online and their influence on community life. PLoS ONE 6(7), e22207 (2011). Scholar
  8. 8.
    Cialdini, R.B.: Influence: science and practice (2001).
  9. 9.
    Daamen, D.D., Dancker, H., Staats, H., Wilke, A.M., Engelen, M.: Improving environmental behavior in companies: the effectiveness of tailored versus nontailored interventions. Environ. Behav. 33(2), 229–248 (2001). doi: 10.1177/00139160121972963CrossRefGoogle Scholar
  10. 10.
    Dodds, P.S., Danforth, C.M.: Measuring the happiness of large-scale written expression: songs, blogs, and presidents. J. Happiness Stud. 11(4), 441–456 (2010). doi: 10.1007/s10902-009-9150-9CrossRefGoogle Scholar
  11. 11.
    Easterlin, N.: A Biocultural Approach to Literary Theory and Interpretation. JHU Press, Baltimore (2012)Google Scholar
  12. 12.
    Franzosi, R.: PC-ACE (2016).
  13. 13.
    Gifford, R.: 33 reasons why mankind isn’t acting to stem global warming. PostMagazine (2015).
  14. 14.
    Gruzd, A.: Emotions in the twitterverse and implications for user interface design. AIS Trans. Hum. Comput. Interact. 5(1), 42–56 (2013). Scholar
  15. 15.
    Gutsell, J.N., Inzlicht, M.: A neuroaffective perspective on why people fail to live a sustainable lifestyle. In: Van Trijp, H.C. (ed.) Encouraging Sustainable Behavior: Psychology and the Environment, pp. 137–154. Psychology Press, New York (2013)Google Scholar
  16. 16.
    Hołyst, J.A., Chmiel, A., Sienkiewicz, J.: Detection and modeling of collective emotions in online data. In: Holyst, J.A. (ed.) Cyberemotions, pp. 137–158. Springer, Cham (2017). doi: 10.1007/978-3-319-43639-5_8CrossRefGoogle Scholar
  17. 17.
    Ji, E., Amor, M.C.: Bridging the gap between sustainable design education and application. Int. J. Des. Manag. Prof. Pract. 8(3–4), 15–38 (2014)Google Scholar
  18. 18.
    Kelly, C.: Do you know what I mean > :( A linguistic study of the understanding of emoticons and emojis in text messages. Bachelor dissertation, Halmad University (2015).
  19. 19.
    Leydesdorff, L.: TI.exe for co-word analysis (2013).
  20. 20.
    Mckenzie-Mohr, D.: New ways to promote proenvironmental behavior: promoting sustainable behavior: an introduction to community-based social marketing. J. Soc. Issues 56(3), 543–554 (2000). doi: 10.1111/0022-4537.00183CrossRefGoogle Scholar
  21. 21.
    Mishne, G.: Experiments with mood classification in blog posts. In: Argamon, S., Karlgren, J., Shanahan, J. (eds.) Proceedings of ACM SIGIR 2005 Workshop on Stylistic Analysis of Text for Information Access, vol. 19, pp. 321–327. Citeseer (2005).
  22. 22.
    Saif, M.M., Turney, P.D.: Crowdsourcing a word-emotion association lexicon. Comput. Intell. 29(3), 436–465 (2013). doi: 10.1111/j.1467-8640.2012.00460.xMathSciNetCrossRefGoogle Scholar
  23. 23.
    Niedderer, K., Ludden, G., Clune, S., Lockton, D., Mackrill, J., Morris, A., Cain, R., et al.: Design for behaviour change as a driver for sustainable innovation: challenges and opportunities for implementation in the private and public sectors. Int. J. Des. 10(2), 67–85 (2016)Google Scholar
  24. 24.
    Novak, P.K., Smailović, J., Sluban, B., Mozetič, I.: Sentiment of emojis. PLoS ONE 10(12), e0144296 (2015).
  25. 25.
    Paltoglou, G., Theunis, M., Kappas, A., Thelwall, M.: Predicting emotional responses to long informal text. IEEE Trans. Affect. Comput. 4(1), 106–115 (2013). doi: 10.1109/T-AFFC.2012.26CrossRefGoogle Scholar
  26. 26.
    Paltoglou, G., Thelwall, M.: Sensing social media: a range of approaches for sentiment analysis. In: Holyst, J.A. (ed.) Cyberemotions, pp. 97–117. Springer, Cham (2017). doi: 10.1007/978-3-319-43639-5_6CrossRefGoogle Scholar
  27. 27.
    Park, J., Barash, V., Fink, C., Cha, M.: Emoticon style: interpreting differences in emoticons across cultures. In: Seventh International AAAI Conference on Weblogs and Social Media, North America, June 2013Google Scholar
  28. 28.
    R Core Team: R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna (2013).
  29. 29.
    Redondo, J., Fraga, I., Padrón, I., Comesaña, M.: The Spanish adaptation of ANEW (affective norms for English words). Behav. Res. Methods 39(3), 600–605 (2007). doi: 10.3758/BF03193031CrossRefGoogle Scholar
  30. 30.
    Rieder, B.: YouTube data tools. Computer software. Vers. 1.0. N.p (2015).
  31. 31.
    Scannell, L., Gifford, R.: Defining place attachment: a tripartite organizing framework. J. Environ. Psychol. 30(1), 1–10 (2010). doi: 10.1016/j.jenvp.2009.09.006CrossRefGoogle Scholar
  32. 32.
    Schultz, P., Wesley, J.M., Nolan, R.B., Cialdini, N.J., Griskevicius, V.: The constructive, destructive, and reconstructive power of social norms. Psychol. Sci. 18(5), 429–434 (2007). doi: 10.1111/j.1467-9280.2007.01917.xCrossRefGoogle Scholar
  33. 33.
    Strapparava, C., Valitutti, A.: WordNet affect: an affective extension of WordNet. In: Proceedings of the 4th International Conference on Language Resources and Evaluation, Lisbon, Portugal, vol. 4, pp. 1083–1086 (2004)Google Scholar
  34. 34.
    Tausczik, Y.R., Pennebaker, J.W.: The psychological meaning of words: LIWC and computerized text analysis methods. J. Lang. Soc. Psychol. 29(1), 24–54 (2010). doi: 10.1177/0261927X09351676CrossRefGoogle Scholar
  35. 35.
    Thelwall, M.: The heart and soul of the web? Sentiment strength detection in the social web with sentistrength. In: Holyst, J.A. (ed.) Cyberemotions, pp. 119–134. Springer, Cham (2017). doi: 10.1007/978-3-319-43639-5_7CrossRefGoogle Scholar
  36. 36.
    Thelwall, M., Sud, P., Vis, F.: Commenting on YouTube videos: from Guatemalan rock to el big bang. J. Am. Soc. Inf. Sci. Technol. 63(3), 616–629 (2012). doi: 10.1002/asi.21679CrossRefGoogle Scholar
  37. 37.
    Ueda, E.S.: Industrial designers working towards an eco-innovation approach. Bull. Jpn. Soc. Sci. Des. 62(1), 11–20 (2015). doi: 10.11247/jssdj.62.1_11CrossRefGoogle Scholar
  38. 38.
    Van Atteveldt, W.H.: Semantic network analysis: techniques for extracting, representing, and querying media content. Ph.D. dissertation, Vrije Universiteit (2008).
  39. 39.
    Vargas-Meza, X., Yamanaka, T.: Local food & organic food: communication and sentiment in YouTube video networks. In: 6th International Kansei Engineering and Emotion Research Conference KEER, University of Leeds, Leeds, UK, 31 August–2 September 2016 (2016)Google Scholar
  40. 40.
    Vargas-Meza, X., Yamanaka, T.: Sustainable design in video social networks. In: Tsukuba Global Science Week 2016, Tsukuba, Japan (2016).
  41. 41.
    Wallace, J.: Handmade 2.0: women, DIY networks and the cultural economy of craft. Ph.D. dissertation, Concordia University (2014).
  42. 42.
    Zafra, R.: Ciberfeminismo y ‘net-art’, redes interconectadas. Mujeres en Red. El Periódico Feminista (2008).

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.The University of TsukubaTsukubaJapan

Personalised recommendations