Advertisement

Application of OPC UA Protocol for the Internet of Vehicles

  • Rafał Cupek
  • Adam Ziębiński
  • Marek Drewniak
  • Marcin Fojcik
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10449)

Abstract

Nowadays, Advanced Driver Assistance Systems (ADAS) support drivers of vehicles in emergency situations that are connected with vehicular traffic. They help to save people’s lives and minimise the losses in accidents. ADAS use information that is supported by a variety of sensors, which are responsible for tracking the vehicle’s surroundings. Unfortunately, the range of the sensors is limited to several dozen metres and even less in the case of obstacles. This shortens the time for a reaction and, therefore, there may not be enough time to avoid an accident. In order to overcome this drawback, vehicles have to share the information that is available in ADAS. The authors investigated different vehicle-to-vehicle communication possibilities. Based on an analysis of the state of the art, the authors present an original concept that is focused on applying the OPC UA (IEC 62541) communication protocol for services that correspond to the Internet of Vehicles concept.

Keywords

Internet of Vehicles Vehicle-to-vehicle communication Advanced Driver Assistance Systems (ADAS) Smart car OPC UA (IEC 62541) 

Notes

Acknowledgements

This work was supported by the European Union from the FP7-PEOPLE-2013-IAPP AutoUniMo project “Automotive Production Engineering Unified Perspective based on Data Mining Methods and Virtual Factory Model” (grant agreement no: 612207) and research work financed from funds for science in years 2016–2017 allocated to an international co-financed project (grant agreement no: 3491/7.PR/15/2016/2).

References

  1. 1.
    Ziebinski, A., Cupek, R., Grzechca, D., Chruszczyk, L.: Review of advanced driver assistance systems (ADAS). In: 18th IEEE International Conference on Industrial Technology (2017)Google Scholar
  2. 2.
    Bengler, K., Dietmayer, K., Farber, B., Maurer, M., Stiller, C., Winner, H.: Three decades of driver assistance systems: review and future perspectives. IEEE Intell. Transp. Syst. Mag. 6, 6–22 (2014)CrossRefGoogle Scholar
  3. 3.
    Ziebinski, A., Swierc, S.: Soft core processor generated based on the machine code of the application. J. Circ. Syst. Comput. 25, 1650029 (2016)CrossRefGoogle Scholar
  4. 4.
    Faezipour, M., Nourani, M., Saeed, A., Addepalli, S.: Progress and challenges in intelligent vehicle area networks. Commun. ACM 55, 90 (2012)CrossRefGoogle Scholar
  5. 5.
    Yang, Q., Lim, A., Li, S., Fang, J., Agrawal, P.: ACAR: adaptive connectivity aware routing for vehicular ad hoc networks in city scenarios. Mobile Netw. Appl. 15, 36–60 (2010)CrossRefGoogle Scholar
  6. 6.
    Al-Sultan, S., Al-Doori, M.M., Al-Bayatti, A.H., Zedan, H.: A comprehensive survey on vehicular Ad Hoc network. J. Netw. Comput. Appl. 37, 380–392 (2014)CrossRefGoogle Scholar
  7. 7.
    Andrzejewski, G., Zając, W., Kołopieńczyk, M.: Time dependencies modelling in traffic control algorithms. Presented at the International Conference on Transport Systems Telematics (2013)Google Scholar
  8. 8.
    Sharef, B.T., Alsaqour, R.A., Ismail, M.: Vehicular communication ad hoc routing protocols: a survey. J. Netw. Comput. Appl. 40, 363–396 (2014)CrossRefGoogle Scholar
  9. 9.
    Kasprowski, P., Harezlak, K., Niezabitowski, M.: Eye movement tracking as a new promising modality for human computer interaction, May 2016Google Scholar
  10. 10.
    Tung, L.-C., Mena, J., Gerla, M., Sommer, C.: A cluster based architecture for intersection collision avoidance using heterogeneous networks, June 2013Google Scholar
  11. 11.
    Maslekar, N., Mouzna, J., Boussedjra, M., Labiod, H.: CATS: an adaptive traffic signal system based on car-to-car communication. J. Netw. Comput. Appl. 36, 1308–1315 (2013)CrossRefGoogle Scholar
  12. 12.
    Dang, R., Ding, J., Su, B., Yao, Q., Tian, Y., Li, K.: A lane change warning system based on V2V communication, October 2014Google Scholar
  13. 13.
    Gradinescu, V., Gorgorin, C., Diaconescu, R., Cristea, V., Iftode, L.: Adaptive traffic lights using car-to-car communication, April 2007Google Scholar
  14. 14.
    Obst, M., Mattern, N., Schubert, R., Wanielik, G.: Car-to-Car communication for accurate vehicle localization: the CoVeL approach, March 2012Google Scholar
  15. 15.
    Olariu, S., Weigle, M.C.: Vehicular Networks: From Theory to Practice. CRC Press, Boca Raton (2009)CrossRefGoogle Scholar
  16. 16.
    Koscher, K., Czeskis, A., Roesner, F., Patel, S., Kohno, T., Checkoway, S., McCoy, D., Kantor, B., Anderson, D., Shacham, H., Savage, S.: Experimental security analysis of a modern automobile (2010)Google Scholar
  17. 17.
    Koushanfar, F., Sadeghi, A.-R., Seudie, H.: EDA for secure and dependable cybercars: challenges and opportunities (2012)Google Scholar
  18. 18.
    Pamuła, D., Ziębiński, A.: Securing video stream captured in real time. Przegląd Elektrotechniczny. R. 86(9), 167–169 (2010)Google Scholar
  19. 19.
    Buk, B., Mrozek, D., Małysiak-Mrozek, B.: Remote video verification and video surveillance on android-based mobile devices. In: Gruca, D.A., Czachórski, T., Kozielski, S. (eds.) Man-Machine Interactions 3. AISC, vol. 242, pp. 547–557. Springer, Cham (2014). doi: 10.1007/978-3-319-02309-0_60CrossRefGoogle Scholar
  20. 20.
    Bißmeyer, N., Stübing, H., Schoch, E., Götz, S., Stotz, J.P., Lonc, B.: A generic public key infrastructure for securing car-to-x communication. Presented at the 18th ITS World Congress, Orlando, USA (2011)Google Scholar
  21. 21.
    Cupek, R., Huczala, L.: Passive PROFIET I/O OPC DA Server. Presented at the IEEE Conference on Emerging Technologies & Factory Automation, 2009. ETFA 2009 (2009)Google Scholar
  22. 22.
    Mrozek, D., Malysiak-Mrozek, B., Siaznik, A.: search GenBank: interactive orchestration and ad-hoc choreography of Web services in the exploration of the biomedical resources of the National Center For Biotechnology Information. BMC Bioinform. 14, 73 (2013)CrossRefGoogle Scholar
  23. 23.
    Maka, A., Cupek, R., Rosner, J.: OPC UA object oriented model for public transportation system. Presented at the 2011 Fifth UKSim European Symposium on Computer Modeling and Simulation (EMS) (2011)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Rafał Cupek
    • 1
  • Adam Ziębiński
    • 1
  • Marek Drewniak
    • 2
  • Marcin Fojcik
    • 3
  1. 1.Faculty of Automation Control, Electronics and Computer Science, Institute of InformaticsSilesian University of TechnologyGliwicePoland
  2. 2.Aiut Sp. z o.oGliwicePoland
  3. 3.Western Norway University of Applied SciencesFørdeNorway

Personalised recommendations