Advertisement

Using MEMS Sensors to Enhance Positioning When the GPS Signal Disappears

  • Damian Grzechca
  • Krzysztof Tokarz
  • Krzysztof Paszek
  • Dawid Poloczek
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10449)

Abstract

This paper presents the concept of using embedded MEMS sensors position objects especially when the GPS signal is weak, e.g. in underground car parks, tunnels. Such an approach is important for controlling indoor objects or autonomous vehicles. The signals are acquired by a Raspberry Pi platform with external sensors such as an accelerometer, gyroscope and magnetometer. A self-propelled vehicle was used and several exemplary paths were designed for acquiring signals. It was proven that appropriate signal filtering allows a position to be determined with a small error at a constant velocity condition. Comparing filters such as the moving average, median, Savitzky-Golay and Hampel filters were investigated. Moreover, the system offers a high degree of accuracy in a short time for indoor hybrid positioning systems that also have video processing capabilities. The cyber-physical system can also be used with the existing infrastructure in a building, such as Wi-Fi access points and video cameras.

Keywords

MEMS Accelerometer Gyroscope Positioning GPS 

Notes

Acknowledgements

This work was supported by the European Union from the FP7-PEOPLE-2013-IAPP AutoUniMo project “Automotive Production Engineering Unified Perspective based on Data Mining Methods and Virtual Factory Model” (grant agreement no: 612207) and research work financed from funds for science in years 2016–2017 allocated to an international co-financed project (grant agreement no: 3491/7.PR/15/2016/2) and supported by Polish Ministry of Science and Higher Education with subsidy for maintaining research potential.

References

  1. 1.
    Baheti, R., Gill, H.: Cyber-physical systems. The Impact of Control Technol. 12, 161–166 (2011)Google Scholar
  2. 2.
    Kao, H.-A., Jin, W., Siegel, D., Lee, J.: A cyber physical interface for automation systems—methodology and examples. Machines 3(2), 93–106 (2015)CrossRefGoogle Scholar
  3. 3.
    Ziębiński, A., Cupek, R., Grzechca, D., Chruszczyk, Ł.: Review of advanced driver assistance systems (ADAS). In: 13th International Conference on Computational Methods in Sciences and Engineering, April 2017Google Scholar
  4. 4.
    Ziebinski, A., Cupek, R., Erdogan, H., Waechter, S.: A survey of ADAS technologies for the future perspective of sensor fusion. In: Nguyen, N.-T., Manolopoulos, Y., Iliadis, L., Trawiński, B. (eds.) ICCCI 2016. LNCS, vol. 9876, pp. 135–146. Springer, Cham (2016). doi: 10.1007/978-3-319-45246-3_13CrossRefGoogle Scholar
  5. 5.
    Pittet, S., Renaudin, V., Merminod, B., Kasser, M.: UWB and MEMS based indoor navigation. J. Navig. 61(03), 369–384 (2008)CrossRefGoogle Scholar
  6. 6.
    Budniak, K., Tokarz, K., Grzechca, D.: Practical verification of radio communication parameters for object localization module. In: Gruca, A., Brachman, A., Kozielski, S., Czachórski, T. (eds.) Man–Machine Interactions 4. AISC, vol. 391, pp. 487–498. Springer, Cham (2016). doi: 10.1007/978-3-319-23437-3_41CrossRefGoogle Scholar
  7. 7.
    Grzechca, D., Chruszczyk, Ł.: Location and identification wireless unit for object's monitoring in a protected area. In: 12th International Conference on Data Networks, Communications, Computers (DNCOCO 2013), pp. 186–191 (2013) Google Scholar
  8. 8.
    Alarifi, A., et al.: Ultra wideband indoor positioning technologies: analysis and recent advances. Sensors 16(5), 707 (2016)CrossRefGoogle Scholar
  9. 9.
    Chruszczyk, Ł., Zając, A., Grzechca, D.: Comparison of 2.4 and 5 GHz WLAN network for purpose of indoor and outdoor location. Int. J. Electron. Telecommun. 62(1), 71–79 (2016)CrossRefGoogle Scholar
  10. 10.
    Grzechca, D.E., Pelczar, P., Chruszczyk, L.: Analysis of object location accuracy for iBeacon technology based on the RSSI path loss model and fingerprint map. Int. J. Electron. Telecommun. 62(4), 371–378 (2016)CrossRefGoogle Scholar
  11. 11.
    Mautz, R.: Indoor positioning technologies. Habilitation Thesis submitted to ETH Zurich (2012)Google Scholar
  12. 12.
    Burger, W.: Zhang’s camera calibration algorithm: in-depth tutorial and implementation. month (2016). Technical report HGB16-05, 16 May 2016, Department of Digital Media, University of Applied Sciences Upper Austria, School of Informatics, Communications and Media, Softwarepark 11, 4232 Hagenberg, Austria. www.fh-hagenberg.at, https://www.researchgate.net/profile/Wilhelm_Burger/publication/303233579_Zhang’s_Camera_Calibration_Algorithm_In-Depth_Tutorial_and_Implementation/links/5739ade408ae9f741b2c816f/Zhangs-Camera-Calibration-Algorithm-In-Depth-Tutorial-and-Implementation.pdf
  13. 13.
    Grzechca, D., Wróbel, T., Bielecki, P.: Indoor localization of objects based on RSSI and MEMS sensors. In: 2014 14th International Symposium on Communications and Information Technologies (ISCIT), pp. 143–146. IEEE (2014). doi: 10.1109/ISCIT.2014.7011888
  14. 14.
    Cupek, R., Ziebinski, A., Fojcik, M.: An ontology model for communicating with an autonomous mobile platform. In: Kozielski, S., Mrozek, D., Kasprowski, P., Małysiak-Mrozek, B., Kostrzewa, D. (eds.) BDAS 2017. CCIS, vol. 716, pp. 480–493. Springer, Cham (2017). doi: 10.1007/978-3-319-58274-0_38CrossRefGoogle Scholar
  15. 15.
    Cupek, R., Ziebinski, A., Franek, M.: FPGA based OPC UA embedded industrial data server implementation. J. Circuits Syst. Comput. 22(08), 18 (2013)CrossRefGoogle Scholar
  16. 16.
    Pearson, R.K., et al.: The class of generalized Hampel filters. In: 2015 23rd European Signal Processing Conference (EUSIPCO), pp. 2501–2505. IEEE (2015). doi: 10.1109/EUSIPCO.2015.7362835
  17. 17.
    Smith, S.W.: The scientist and engineer’s guide to digital signal processing (1997). http://www.dspguide.com/CH28.PDF
  18. 18.
    Pearson, R.K., Neuvo, Y., Astola, J., Gabbouj, M.: Generalized Hampel filters. EURASIP J. Adv. Signal Process. 2016(1), 87 (2016)CrossRefGoogle Scholar
  19. 19.
    Schafer, R.: What is a Savitzky-Golay Filter? [Lecture Notes]. IEEE Sig. Process. Mag. 28(4), 111–117 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Damian Grzechca
    • 1
  • Krzysztof Tokarz
    • 1
  • Krzysztof Paszek
    • 1
  • Dawid Poloczek
    • 1
  1. 1.Faculty of Automatic Control, Electronics and Computer ScienceSilesian University of TechnologyGliwicePoland

Personalised recommendations