Advertisement

Obstacle Avoidance by a Mobile Platform Using an Ultrasound Sensor

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10449)

Abstract

The problems of obstacle avoidance occur in many areas for autonomous vehicles. In automotive field, Advanced Driver Assistance Systems modules equipped with sensor fusion are used to resolve these problems. In the case of small mobile platforms, electronic sensors such as ultrasound, gyroscopes, magnetometers and encoders are commonly used. The data obtained from these sensors is measured and processed, which permits the development of automatic obstacle avoidance functions for mobile platforms. The information from these sensors is sufficient to detect obstacles, determine the distance to obstacles and prepare actions to avoid the obstacles. This paper presents the results of research on two obstacle avoidance algorithms that were prepared for small mobile platforms that take advantage of an ultrasonic sensor. The presented solutions are based on calculating the weights of the possible directions for obstacle avoidance and the geometric analysis of an obstacle.

Keywords

ADAS Detection the obstacle Obstacle avoidance Sensors 

Notes

Acknowledgements

This work was supported by the European Union through the FP7-PEOPLE-2013-IAPP AutoUniMo project “Automotive Production Engineering Unified Perspective based on Data Mining Methods and Virtual Factory Model” (Grant Agreement No: 612207) and research work financed from funds for science for years: 2016–2017 allocated to an international co-financed project.

References

  1. 1.
    Bengler, K., Dietmayer, K., Farber, B., Maurer, M., Stiller, C., Winner, H.: Three decades of driver assistance systems: review and future perspectives. IEEE Intell. Transp. Syst. Mag. 6, 6–22 (2014)CrossRefGoogle Scholar
  2. 2.
    Fildes, B., Keall, M., Thomas, P., Parkkari, K., Pennisi, L., Tingvall, C.: Evaluation of the benefits of vehicle safety technology: The MUNDS study. Accid. Anal. Prev. 55, 274–281 (2013)CrossRefGoogle Scholar
  3. 3.
    Ziebinski, A., Cupek, R., Grzechca, D., Chruszczyk, L.: Review of advanced driver assistance systems (ADAS). In: 18th IEEE International Conference on Industrial Technology (2017)Google Scholar
  4. 4.
    Khaitan, S.K., McCalley, J.D.: Design techniques and applications of cyberphysical systems: a survey. IEEE Syst. J. 9, 350–365 (2015)CrossRefGoogle Scholar
  5. 5.
    Wu, F.-J., Kao, Y.-F., Tseng, Y.-C.: From wireless sensor networks towards cyber physical systems. Pervasive Mob. Comput. 7, 397–413 (2011)CrossRefGoogle Scholar
  6. 6.
    Wang, Y., Vuran, M.C., Goddard, S.: Cyber-physical systems in industrial process control. ACM SIGBED Rev. 5, 1–2 (2008)CrossRefGoogle Scholar
  7. 7.
    Li, R., Liu, C., Luo, F.: A design for automotive CAN bus monitoring system (2008)Google Scholar
  8. 8.
    Jia, X., Hu, Z., Guan, H.: A new multi-sensor platform for adaptive driving assistance system (ADAS). In: 2011 9th World Congress on Intelligent Control and Automation, pp. 1224–1230 (2011)Google Scholar
  9. 9.
    Garcia, F., Martin, D., de la Escalera, A., Armingol, J.M.: Sensor fusion methodology for vehicle detection. IEEE Intell. Transp. Syst. Mag. 9, 123–133 (2017)CrossRefGoogle Scholar
  10. 10.
    Sezer, V., Gokasan, M.: A novel obstacle avoidance algorithm: “follow the gap method”. Robot. Auton. Syst. 60, 1123–1134 (2012)CrossRefGoogle Scholar
  11. 11.
    Bertozzi, M., Broggi, A.: GOLD: a parallel real-time stereo vision system for generic obstacle and lane detection. IEEE Trans. Image Process. 7, 62–81 (1998)CrossRefGoogle Scholar
  12. 12.
    Yang, C., Hongo, H., Tanimoto, S.: A new approach for in-vehicle camera obstacle detection by ground movement compensation (2008)Google Scholar
  13. 13.
    Budzan, S.: Fusion of visual and range images for object extraction. In: Chmielewski, L.J., Kozera, R., Shin, B.-S., Wojciechowski, K. (eds.) Computer Vision and Graphics. LNCS, pp. 108–115. Springer, Heidelberg (2014). doi: 10.1007/978-3-319-11331-9_14CrossRefGoogle Scholar
  14. 14.
    Grzechca, D.E., Pelczar, P., Chruszczyk, L.: Analysis of object location accuracy for iBeacon technology based on the RSSI path loss model and fingerprint map. Int. J. Electron. Telecommun. 62, 371–378 (2016)CrossRefGoogle Scholar
  15. 15.
    Strakowski, M.R., Kosmowski, B.B., Kowalik, R., Wierzba, P.: An ultrasonic obstacle detector based on phase beamforming principles. IEEE Sens. J. 6, 179–186 (2006)CrossRefGoogle Scholar
  16. 16.
    Jaskuła, M., Łazoryszczak, M., Peryt, S.: Fast MEMS application prototyping using Arduino/LabView pair. Meas. Autom. Monit. 61, 548–550 (2015)Google Scholar
  17. 17.
    Mocha, J., Kania, D.: Hardware implementation of a control program in FPGA structures. Prz. Elektrotech. 88, 95–100 (2012)Google Scholar
  18. 18.
    Ziębiński, A., Świerc, S.: The VHDL implementation of reconfigurable MIPS processor. In: Cyran, K.A., Kozielski, S., Peters, J.F., Stańczyk, U., Wakulicz-Deja, A. (eds.) Man-Machine Interactions, vol. 59, pp. 663–669. Springer, Berlin (2009). doi: 10.1007/978-3-642-00563-3_69CrossRefGoogle Scholar
  19. 19.
    Cupek, R., Ziebinski, A., Fojcik, M.: An ontology model for communicating with an autonomous mobile platform. In: Kozielski, S., Mrozek, D., Kasprowski, P., Małysiak-Mrozek, B., Kostrzewa, D. (eds.) Beyond Databases, Architectures and Structures. Towards Efficient Solutions for Data Analysis and Knowledge Representation, vol. 716, pp. 480–493. Springer, Berlin (2017). doi: 10.1007/978-3-319-58274-0_38CrossRefGoogle Scholar
  20. 20.
    Maka, A., Cupek, R., Rosner, J.: OPC UA object oriented model for public transportation system. Presented at the 2011 Fifth UKSim European Symposium on Computer Modeling and Simulation (EMS) (2011)Google Scholar
  21. 21.
    Czyba, R., Niezabitowski, M., Sikora, S.: Construction of laboratory stand and regulation in ABS car system. Presented at the 2013 International Conference on Unmanned Aircraft Systems (ICUAS). IEEE, May 2013Google Scholar
  22. 22.
    Ulacha, G., Stasinski, R.: Improving neural network approach to lossless image coding. Presented at the Picture Coding Symposium (PCS) (2012)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Institute of InformaticsSilesian University of TechnologyGliwicePoland

Personalised recommendations