Skip to main content

ADAS Device Operated on CAN Bus Using PiCAN Module for Raspberry Pi

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10449))

Abstract

In the era of the development of Cyber-Physical Systems, solutions that are based on the transparent and universal possibility to monitor and analyse signals from the measurement devices have become more popular. This is especially crucial in the case of safe and real-time systems, e.g. in the CAN networks that are used in the automotive and manufacturing. During the research, the authors focused on preparing a solution that is based on the Raspberry Pi computer. When used as an independent and non-interfering CAN node, it is capable of monitoring, analysing and controlling Advanced Driving Assistance Systems. The solution can be used as both a gateway between a hermetic, safe system and the external world and also as an onboard element that performs auxiliary data analyses that do not load the main processing unit.

This is a preview of subscription content, log in via an institution.

References

  1. Cyber-Physical Systems (CPS) (NSF17529) | NSF - National Science Foundation. https://www.nsf.gov/pubs/2017/nsf17529/nsf17529.htm

  2. Wu, F.-J., Kao, Y.-F., Tseng, Y.-C.: From wireless sensor networks towards cyber physical systems. Pervasive Mobile Comput. 7, 397–413 (2011)

    Article  Google Scholar 

  3. Khaitan, S.K., McCalley, J.D.: Design techniques and applications of cyberphysical systems: a survey. IEEE Syst. J. 9, 350–365 (2015)

    Article  Google Scholar 

  4. Wang, Y., Vuran, M.C., Goddard, S.: Cyber-physical systems in industrial process control. ACM SIGBED Rev. 5, 1–2 (2008)

    Article  Google Scholar 

  5. Li, R., Liu, C., Luo, F.: A design for automotive CAN bus monitoring system (2008)

    Google Scholar 

  6. Cupek, R., Ziebinski, A., Franek, M.: FPGA based OPC UA embedded industrial data server implementation. J. Circ. Syst. Comput. 22, 1350070 (2013)

    Article  Google Scholar 

  7. Marwedel, P.: Embedded System Design: Embedded Systems Foundations of Cyber-Physical Systems. Springer, New York (2010). doi:10.1007/978-94-007-0257-8

    Book  MATH  Google Scholar 

  8. Jazdi, N.: Cyber physical systems in the context of industry 4.0. Presented at the 2014 IEEE International Conference on Automation, Quality and Testing, Robotics, May 2014

    Google Scholar 

  9. Zhou, F., Li, S., Hou, X.: Development method of simulation and test system for vehicle body CAN bus based on CANoe. Presented at the 7th World Congress on Intelligent Control and Automation, 2008, WCICA 2008 (2008)

    Google Scholar 

  10. Qianfeng, L., Bo, L., Mingzhao, C.: SJA1000-based CAN-bus intelligent control system design. Tech. Autom. Appl. 1, 61–64 (2003)

    Google Scholar 

  11. Ziebinski, A., Cupek, R., Erdogan, H., Waechter, S.: A survey of ADAS technologies for the future perspective of sensor fusion. In: Nguyen, N.T., Iliadis, L., Manolopoulos, Y., Trawiński, B. (eds.) Computational Collective Intelligence, vol. 9876, pp. 135–146. Springer, Cham (2016). doi:10.1007/978-3-319-45246-3_13

    Chapter  Google Scholar 

  12. Ziębiński, A., Świerc, S.: The VHDL implementation of reconfigurable MIPS processor. In: Cyran, K.A., Kozielski, S., Peters, J.F., Stańczyk, U., Wakulicz-Deja, A. (eds.) Man-Machine Interactions, vol. 59, pp. 663–669. Springer, Berlin (2009). doi:10.1007/978-3-642-00563-3_69

    Chapter  Google Scholar 

  13. Leen, G., Heffernan, D.: Expanding automotive electronic systems. Computer 35, 88–93 (2002)

    Article  Google Scholar 

  14. Bosch, R.: CAN Specification Version 2.0. Rober Bousch GmbH, Postfach (1991)

    Google Scholar 

  15. Herpel, T., Hielscher, K.-S., Klehmet, U., German, R.: Stochastic and deterministic performance evaluation of automotive CAN communication. Comput. Netw. 53, 1171–1185 (2009)

    Article  Google Scholar 

  16. CANoe – the Multibus Development and Test Tool for ECUs and Networks. Vector Informatic GmbH (2011)

    Google Scholar 

  17. Rasshofer, R., Gresser, K.: Automotive radar and lidar systems for next generation driver assistance functions. Adv. Radio Sci. 3, 205–209 (2005)

    Article  Google Scholar 

  18. Ogawa, T., Sakai, H., Suzuki, Y., Takagi, K., Morikawa, K.: Pedestrian detection and tracking using in-vehicle lidar for automotive application. Presented at the 2011 IEEE Intelligent Vehicles Symposium (IV) (2011)

    Google Scholar 

  19. Grzechca, D., Wrobel, T., Bielecki, P.: Indoor location and identification of objects with video surveillance system and WiFi module (2014)

    Google Scholar 

  20. Budzan, S., Kasprzyk, J.: Fusion of 3D laser scanner and depth images for obstacle recognition in mobile applications. Opt. Lasers Eng. 77, 230–240 (2016)

    Article  Google Scholar 

  21. Behere, S., Törngren, M.: A functional architecture for autonomous driving. Presented at the Proceedings of the First International Workshop on Automotive Software Architecture (2015)

    Google Scholar 

  22. Maka, A., Cupek, R., Rosner, J.: OPC UA object oriented model for public transportation system. Presented at the 2011 Fifth UKSim European Symposium on Computer Modeling and Simulation (EMS) (2011)

    Google Scholar 

  23. Cupek, R., Ziebinski, A., Fojcik, M.: An ontology model for communicating with an autonomous mobile platform. In: Kozielski, S., Mrozek, D., Kasprowski, P., Małysiak-Mrozek, B., Kostrzewa, D. (eds.) BDAS 2017. CCIS, vol. 716, pp. 480–493. Springer, Cham (2017). doi:10.1007/978-3-319-58274-0_38

    Chapter  Google Scholar 

Download references

Acknowledgements

This work was supported by the European Union from the FP7-PEOPLE-2013-IAPP AutoUniMo project “Automotive Production Engineering Unified Perspective based on Data Mining Methods and Virtual Factory Model” (grant agreement no: 612207) and research work financed from funds for science in years 2016–2017 allocated to an international co-financed project (grant agreement no: 3491/7.PR/15/2016/2) and supported by Polish Ministry of Science and Higher Education with subsidy for maintaining research potential.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marek Drewniak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Drewniak, M., Tokarz, K., Rędziński, M. (2017). ADAS Device Operated on CAN Bus Using PiCAN Module for Raspberry Pi. In: Nguyen, N., Papadopoulos, G., Jędrzejowicz, P., Trawiński, B., Vossen, G. (eds) Computational Collective Intelligence. ICCCI 2017. Lecture Notes in Computer Science(), vol 10449. Springer, Cham. https://doi.org/10.1007/978-3-319-67077-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67077-5_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67076-8

  • Online ISBN: 978-3-319-67077-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics