Skip to main content

Enhanced Reliability of ADAS Sensors Based on the Observation of the Power Supply Current and Neural Network Application

  • Conference paper
  • First Online:
Computational Collective Intelligence (ICCCI 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10449))

Included in the following conference series:

Abstract

Advanced Driver Assistance Systems (ADAS) are essential parts for developing the autonomous vehicle concept. They cooperate with different on-board car equipment to make driving safe and comfortable. There are many ways to monitor their behaviour and assess their reliability. The presented solution combines the versatility of applications (it can be used with almost any kind of sensors), low cost (data acquisition using this method requires only a simple electronic circuit) and requires no adjustments of the sensor’s software or hardware. Using this type of analysis, one can determine the device’s family, find any over- and under-voltages that can damage the sensor or even detect two-way CAN communication malfunctions. Since the data acquired is complex (and can be troublesome during processing) – one of the best solutions is to cope with the problem by using a variety of neural networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Khaitan, S.K., McCalley, J.D.: Design techniques and applications of cyberphysical systems: a survey. IEEE Syst. J. 9(2), 350–365 (2015)

    Article  Google Scholar 

  2. Wu, F.-J., Kao, Y.-F., Tseng, Y.-C.: From wireless sensor networks towards cyber physical systems. Pervasive Mob. Comput. 7(4), 397–413 (2011)

    Article  Google Scholar 

  3. Wang, Y., Vuran, M.C., Goddard, S.: Cyber-physical systems in industrial process control. ACM SIGBED Rev. 5(1), 1–2 (2008)

    Article  Google Scholar 

  4. Flak, J., Gaj, P., Tokarz, K., Wideł, S., Ziębiński, A.: Remote monitoring of geological activity of inclined regions – the concept. In: Kwiecień, A., Gaj, P., Stera, P. (eds.) CN 2009. CCIS, vol. 39, pp. 292–301. Springer, Heidelberg (2009). doi:10.1007/978-3-642-02671-3_34

    Chapter  Google Scholar 

  5. Li, R., Liu, C., Luo, Feng.: A design for automotive CAN bus monitoring system, pp. 1–5 (2008)

    Google Scholar 

  6. Maka, A., Cupek, R., Rosner, J.: OPC UA object oriented model for public transportation system. Presented at the 2011 Fifth UKSim European Symposium on Computer Modeling and Simulation (EMS), pp. 311–316 (2011)

    Google Scholar 

  7. Cupek, R., Huczala, L.: Passive PROFIET I/O OPC DA server. Presented at the IEEE Conference on Emerging Technologies & Factory Automation, ETFA 2009, pp. 1–5 (2009)

    Google Scholar 

  8. Jia, X., Hu, Z., Guan, H.: A new multi-sensor platform for adaptive driving assistance system (ADAS). In: 2011 9th World Congress on Intelligent Control and Automation, pp. 1224–1230 (2011)

    Google Scholar 

  9. Bengler, K., Dietmayer, K., Farber, B., Maurer, M., Stiller, C., Winner, H.: Three decades of driver assistance systems: review and future perspectives. IEEE Intell. Transp. Syst. Mag. 6(4), 6–22 (2014)

    Article  Google Scholar 

  10. Fildes, B., Keall, M., Thomas, P., Parkkari, K., Pennisi, L., Tingvall, C.: Evaluation of the benefits of vehicle safety technology: the MUNDS study. Accid. Anal. Prev. 55, 274–281 (2013)

    Article  Google Scholar 

  11. Pamuła, D., Ziębiński, A.: Securing video stream captured in real time. Prz. Elektrotech. 86(9), 167–169 (2010)

    Google Scholar 

  12. Ziębiński, A., Cupek, R., Grzechca, D., Chruszczyk, L.: Review of advanced driver assistance systems (ADAS). In: 13th International Conference of Computational Methods in Sciences and Engineering, April 2017

    Google Scholar 

  13. Mehala, N., Dahiya, R.: Motor current signature analysis and its applications in induction motor fault diagnosis. Int. J. Syst. Appl. Eng. Dev. 2(1), 29–31 (2007)

    Google Scholar 

  14. Somayajula, S.A., Sanchez-Sinencio, E., Pineda de Gyvez, J.: Analog fault diagnosis based on ramping power supply current signature clusters. IEEE Trans. Circ. Syst. II Analog Digit. Sig. Process. 43(10), 703–711 (2002)

    Article  Google Scholar 

  15. Zhang, X., Kang, J., Xiao, L., Zhao, J., Teng, H.: A new improved kurtogram and its application to bearing fault diagnosis. Shock Vib. 2015, Article ID 385412, 22 p. (2015). doi:10.1155/2015/385412

    Article  Google Scholar 

  16. Mori, M., Fujishima, M.: Remote monitoring and maintenance system for CNC machine tools. Proced. CIRP 12, 7–12 (2013)

    Article  Google Scholar 

  17. Colledani, M., et al.: Design and management of manufacturing systems for production quality. CIRP Ann. Manuf. Technol. 63(2), 773–796 (2014)

    Article  Google Scholar 

  18. el Popovic, R., Randjelovic, Z., Manic, D.: Integrated hall-effect magnetic sensors. Sens. Actuators Phys. 91(1), 46–50 (2001)

    Article  Google Scholar 

  19. Larose, D.T.: k-nearest neighbor algorithm. In: Discovering Knowledge in Data, pp. 90–106. Wiley, Hoboken (2005). doi:10.1002/0471687545.ch5

  20. Talaska, T., Dlugosz, R., Wojtyna, R.: Current mode analog Kohonen neural network. In: Mixed Design of Integrated Circuits and Systems, pp. 251–252 (2007)

    Google Scholar 

  21. Moré, J.J.: The Levenberg-Marquardt algorithm: implementation and theory. In: Watson, G.A. (ed.) Numerical Analysis. LNM, vol. 630, pp. 105–116. Springer, Heidelberg (1978). doi:10.1007/BFb0067700

    Chapter  Google Scholar 

  22. Burden, F., Winkler, D.: Bayesian regularization of neural networks. In: Livingstone, D.J. (ed.) Artificial Neural Networks. Methods and Applications, pp. 23–42. Humana Press, New York (2009). doi:10.1007/978-1-60327-101-1_3

    Chapter  Google Scholar 

  23. Cupek, R., Ziebinski, A., Drewniak, M.: Ethernet-based test stand for a CAN network. In: 18th IEEE International Conference on Industrial Technology (2017)

    Google Scholar 

  24. Grzechca, D.: Soft fault clustering in analog electronic circuits with the use of self organizing neural network. Metrol. Meas. Syst. 18(4), 555–568 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the European Union from the FP7-PEOPLE-2013-IAPP AutoUniMo project “Automotive Production Engineering Unified Perspective based on Data Mining Methods and Virtual Factory Model” (Grant Agreement No. 612207) and research work financed from the funds for science in the years 2016–2017, which are allocated to an international co-financed project (Grant Agreement No. 3491/7.PR/15/2016/2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damian Grzechca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Grzechca, D., Ziębiński, A., Rybka, P. (2017). Enhanced Reliability of ADAS Sensors Based on the Observation of the Power Supply Current and Neural Network Application. In: Nguyen, N., Papadopoulos, G., Jędrzejowicz, P., Trawiński, B., Vossen, G. (eds) Computational Collective Intelligence. ICCCI 2017. Lecture Notes in Computer Science(), vol 10449. Springer, Cham. https://doi.org/10.1007/978-3-319-67077-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67077-5_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67076-8

  • Online ISBN: 978-3-319-67077-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics