Advertisement

Knowledge Exploration in Medical Rule-Based Knowledge Bases

  • Agnieszka Nowak-Brzezińska
  • Tomasz Rybotycki
  • Roman Simiński
  • Małgorzata Przybyła-Kasperek
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10449)

Abstract

This paper introduces the methodology of domain knowledge exploration in so called rule-based knowledge bases from the medical perspective, but it could easily by transformed into any other domain. The article presents the description of the CluVis software with rules clustering and visualization implementation. The rules are clustered by using hierarchical clustering algorithm and the resulting groups are visualized using the tree maps method. The aim of the paper is to present how to explore the knowledge hidden in rule-based knowledge bases. Experiments include the analysis of the influence of different clustering parameters on the representation of knowledge bases.

References

  1. 1.
    Bazan, J.G., Szczuka, M.S., Wróblewski, J.: A new version of rough set exploration system. In: Alpigini, J.J., Peters, J.F., Skowron, A., Zhong, N. (eds.) RSCTC 2002. LNCS, vol. 2475, pp. 397–404. Springer, Heidelberg (2002). doi: 10.1007/3-540-45813-1_52CrossRefzbMATHGoogle Scholar
  2. 2.
    Boriah, S., Chandola, V., Kumar, V.: Similarity measures for categorical data: a comparative evaluation. In: Proceedings of the 8th SIAM International Conference on Data Mining, pp. 243–254 (2008)CrossRefGoogle Scholar
  3. 3.
    Dubes, R., Jain, A.K.: Clustering techniques: the user’s dilemma. Pattern Recognit. 8(4), 247–260 (1976)CrossRefGoogle Scholar
  4. 4.
    Lichman M. UCI Machine Learning Repository, University of California (2013). http://archive.ics.uci.edu/ml
  5. 5.
    Nowak-Brzezińska, A.: Mining rule-based knowledge bases inspired by rough set theory. Fundamenta Informaticae 148, 35–50 (2016). doi: 10.3233/FI-2016-1421. IOS PressMathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Przybyła-Kasperek, M., Wakulicz-Deja, A.: The strength of coalition in a dispersed decision support system with negotiations. Eur. J. Oper. Res. 252, 947–968 (2016)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Simiński, R.: Multivariate approach to modularization of the rule knowledge bases. In: Gruca, A., Brachman, A., Kozielski, S., Czachórski, T. (eds.) Man–Machine Interactions 4. AISC, vol. 391, pp. 473–483. Springer, Cham (2016). doi: 10.1007/978-3-319-23437-3_40CrossRefGoogle Scholar
  8. 8.
    Grzymala-Busse, J.W.: A new version of the rule induction system LERS. Fundamenta Informaticae 31, 27–39 (1997)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Agnieszka Nowak-Brzezińska
    • 1
  • Tomasz Rybotycki
    • 1
  • Roman Simiński
    • 1
  • Małgorzata Przybyła-Kasperek
    • 1
  1. 1.University of SilesiaKatowicePoland

Personalised recommendations