Modeling Skiers’ Dynamics and Behaviors

  • Dariusz Pałka
  • Jarosław Wąs
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10449)


The paper presents a proposal of an adaptation of our model of the skier’s dynamics and behaviors for different groups of downhill skiers: beginner, intermediate and advanced. First, we propose parametrization of our model for different groups, and next we test certain characteristics of motion for different populations of skiers. We have found that by introducing diverse populations with different behavioral patterns, we obtain a much more realistic simulation results, for instance, a more accurate distribution of skiers on ski-slopes and more realistic interactions between them.


Skiers’ modeling Social force model Granular flow Intelligent particles 


  1. 1.
    Fridman, N., Kaminka, G.A.: Modeling pedestrian crowd behavior based on a cognitive model of social comparison theory. Comput. Math. Organ. Theory 16(4), 348–372 (2010)CrossRefGoogle Scholar
  2. 2.
    Fu, L., Song, W., Lv, W., Liu, X., Lo, S.: Multi-grid simulation of counter flow pedestrian dynamics with emotion propagation. Simul. Model. Pract. Theory 60, 1–14 (2016)CrossRefGoogle Scholar
  3. 3.
    Georgoudas, I.G., Koltsidas, G., Sirakoulis, G.C., Andreadis, I.T.: A cellular automaton model for crowd evacuation and its auto-defined obstacle avoidance attribute. In: Bandini, S., Manzoni, S., Umeo, H., Vizzari, G. (eds.) ACRI 2010. LNCS, vol. 6350, pp. 455–464. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-15979-4_48CrossRefzbMATHGoogle Scholar
  4. 4.
    Helbing, D., Molnár, P.: Social force model for pedestrian dynamics. Phys. Rev. E 51(5), 4282–4286 (1995)CrossRefGoogle Scholar
  5. 5.
    Holleczek, T., Tröster, G.: Particle-based model for skiing traffic. Phys. Rev. E 85(5), 056101 (2012). Scholar
  6. 6.
    Howe, J.: Skiing Mechanics. Poudre Press, Fort Collins (1983)Google Scholar
  7. 7.
    Jentschura, U.D., Fahrbach, F.: Physics of skiing: the ideal carving equation and its applications. Can. J. Phys. 82(4), 249–261 (2004)CrossRefGoogle Scholar
  8. 8.
    Korecki, T., Pałka, D., Wąs, J.: Adaptation of social force model for simulation of downhill skiing. J. Comput. Sci., March 2016.
  9. 9.
    Lind, D.A., Sanders, S.P.: The Physics of Skiing. Springer, New York (2004). doi: 10.1007/978-1-4757-4345-6CrossRefGoogle Scholar
  10. 10.
    Nishinari, K., Kirchner, A., Namazi, A., Schadschneider, A.: Extended floor field CA model for evacuation dynamics. IEICE Trans. 87D, 726–732 (2008)Google Scholar
  11. 11.
    Schmitt, K.U., Muser, M.: Investigating reaction times and stopping performance of skiers and snowboarders. Eur. J. Sport Sci. 14(Suppl. 1), S165–S170 (2014). PMID: 24444201CrossRefGoogle Scholar
  12. 12.
    Shealy, J., Ettlinger, C., Johnson, R.: How fast do winter sports participants travel on alpine slopes? J. ASTM Int. 2, 1–8 (2005)CrossRefGoogle Scholar
  13. 13.
    Wąs, J., Gudowski, B., Matuszyk, P.J.: Social distances model of pedestrian dynamics. In: El Yacoubi, S., Chopard, B., Bandini, S. (eds.) ACRI 2006. LNCS, vol. 4173, pp. 492–501. Springer, Heidelberg (2006). doi: 10.1007/11861201_57CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Applied Computer Science, Faculty of Electrical Engineering, Automatics, IT and Biomedical EngineeringAGH University of Science and TechnologyKrakowPoland

Personalised recommendations