A Methodological Approach Towards Crisis Simulations: Qualifying CI-Enabled Information Systems

  • Chrysostomi Maria Diakou
  • Angelika I. Kokkinaki
  • Styliani Kleanthous
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10448)


Low probability high impact events (LoPHIEs) disrupt organizations’ processes severely. Existing methods used for the anticipation and management of such events, suffer from common limitations resulting in a huge impact to the quantification of probability, uncertainty and risk. Continues studies in the field of Crisis Informatics, present an opportunity for the development of a framework that fits the uncertainty related properties of LoPHIEs.

The paper identifies the need for the development and conduction of a series of experiments, aiming to address the factors that qualify Collective Intelligence-enabled Information Systems with respect to their applicability towards support for LoPHIEs; and aims to propose an experiment framework as a methodology for scenario design in LoPHIEs settings.


Collective Intelligence Low probability High impact Emergencies 


  1. 1.
    Hergert, M.: The effect of terrorist attacks on shareholder value: a study of United States international firms. Int. J. Manag. 21(1), 25–28 (2004)Google Scholar
  2. 2.
    World Economic Forum: Global Risks 2014, 9th edn. World Economic Forum, Cologny (2014)Google Scholar
  3. 3.
    Coombs, W.T., Holladay, J.S.: PR Strategy and Application: Managing Influence. Blackwell, Chichester (2010)Google Scholar
  4. 4.
    Halder, B.: Approaches of humanitarian crisis management-associated risks with the ICT-based crowdsourcing paradigm (2010).,
  5. 5.
    Coombs, W.T.: Ongoing Crisis Communication: Planning, Managing, and Responding, 2nd edn. Sage, Los Angeles (2007)Google Scholar
  6. 6.
    Diakou, C.-M., Kokkinaki, A.I.: Enabling sustainable development through networks of collective intelligence. In: 4th Conference of the IDRiM Society. Northumbria University, Newcastle, UK, 4–6 September 2013Google Scholar
  7. 7.
    Armstrong, J.S.: Findings from evidence-based forecasting: methods for reducing forecast error. Int. J. Forecast. 22(3), 583–598 (2006)CrossRefGoogle Scholar
  8. 8.
    Berg, J.E., Neumann, G.R., Rietz, T.A.: Searching for Google’s value: using prediction markets to forecast market capitalization prior to an initial public offering. Manag. Sci. 55(3), 348–361 (2009)CrossRefGoogle Scholar
  9. 9.
    Fildes, R., Goodwin, P., Lawrence, M., Nikolopoulos, K.: Effective forecasting and judgmental adjustments: an empirical evaluation and strategies for improvement in supply-chain planning. Int. J. Forecast. 25, 3–23 (2009)CrossRefGoogle Scholar
  10. 10.
    Goodwin, P., Wright, G.: The limits of forecasting methods in anticipating rare events. Technol. Forecast. Soc. Change 77, 355–368 (2010)CrossRefGoogle Scholar
  11. 11.
    Jakoubi, S., Tjoa, S., Quirchmayr, G.: Rope: a methodology for enabling the risk-aware modelling and simulation of business processes. In: ECIS 2007 Proceedings, Paper 47 (2007)Google Scholar
  12. 12.
    Onkal, D., Gonul, M.S.: Judgmental adjustment: a challenge to providers and users of forecasts. Foresight 2, 13–17 (2007)Google Scholar
  13. 13.
    Funston, F., Wagner, S.: Surviving and Thriving in Uncertainty: Creating the Risk Intelligent Enterprise. John Wiley & Sons, New Jersey (2012)CrossRefGoogle Scholar
  14. 14.
    Hollis, N.: Crisis management: is a new prescription needed? Millward Brown Points of View, pp. 10–14. IT Governance Institute (2007). CombiT 4.1, The IT Governance InstituteGoogle Scholar
  15. 15.
    Klein, M.: Achieving collective intelligence via large-scale on-line argumentation. Center for Collective Intelligence (2007)Google Scholar
  16. 16.
    Brabham, D.C.: Crowdsourcing. The MIT Press Essential Knowledge Series. Massachusetts Institute of Technology, Cambridge (2013)Google Scholar
  17. 17.
    Brabham, D.C.: Crowdsourcing in the Public Sector. Georgetown University Press, Washington DC (2015)Google Scholar
  18. 18.
    Howe, J.: Crowdsourcing: Why the POWER of the Crowd is Driving the Future of Business. Crown Business, New York (2008)Google Scholar
  19. 19.
    Liu, S.B.: Crisis crowdsourcing framework: designing strategic configurations of crowdsourcing for the emergency management domain. Comput. Support. Coop. Work (CSCW) 23, 389–443 (2014). doi: 10.1007/s10606-014-9204-3CrossRefGoogle Scholar
  20. 20.
    Bonabeau, E.: Decisions 2.0: the power of collective intelligence. MITSloan Manag. Rev. 50(2), 45–52 (2009)Google Scholar
  21. 21.
    Lyons, S.: The changing face of corporate defence in the 21st century. StrategicRISK (2008).
  22. 22.
    Malone, T.W., Laubacher, R., Dellarocas, C.: The collective intelligence genome. MITSloan Manag. Rev. 51(3), 21–31 (2010)Google Scholar
  23. 23.
    Nickerson, J.V., Sakamoto, Y.: Crowdsourcing Creativity: Combining Ideas in Networks. In: Workshop on Information in Networks. Stevens Institute of Technology (2010)Google Scholar
  24. 24.
    Prpić, J., Jackson, P., Nguyen, T.: A computational model of crowds for collective intelligence. In: Collective Intelligence 2014. MIT Center for Collective Intelligence (2014).
  25. 25.
    Prpić, J.: Health care crowds: collective intelligence in public health. In: Collective Intelligence 2015. Center for the Study of Complex Systems, University of Michigan (2015).
  26. 26.
    Prpić, J., Taeihagh, A., Melton, J.: The fundamentals of policy crowdsourcing. Policy Internet 7, 340–361 (2015). doi: 10.1002/poi3.102CrossRefGoogle Scholar
  27. 27.
    Dierks, E.: Intelligence-based business continuity part 1, 2, 3. Article of Continuity Insights (2012).
  28. 28.
    Kokkinaki, A.I.: The role of Information Systems for resilience under economic seize: the Cyprus template. In: Conference on Community Resilience (focus on Economic Resilience), University of Minho, Portugal, 12–13 July 2013Google Scholar
  29. 29.
    Zobel, C.W.: Decision support systems for more effective crisis management. In: Conference on Community Resilience (focus on Economic Resilience), University of Minho, Portugal, 12–13 July 2013Google Scholar
  30. 30.
    Limousin, P., Tixier, J., Bony-Dandrieux, A., Chapurlat, V., Sauvagnargues, S.: A new method and tools to scenarios design for crisis management exercises. Chem. Eng. Trans. 53, 319–324 (2016). doi: 10.3303/CET1653054CrossRefGoogle Scholar
  31. 31.
    Walker, W.E., Giddings, J., Armstrong, S.: Training and learning for crisis management using a virtual simulation/gaming environment. Cogn. Tech. Work 13, 163 (2011). doi: 10.1007/s10111-011-0176-5CrossRefGoogle Scholar
  32. 32.
    Quade, E.S.: Predicting the consequences: models and modeling, Chap. 7. In: Miser, H.J., Quade, E.S. (eds.) Handbook of Systems Analysis: Overview of Uses, Procedures, Applications, and Practice. Elsevier Science Publishing Co., Inc, New York (1985)Google Scholar
  33. 33.
    Kleiboer, M.: Simulation methodology for crisis management support. J. Conting. Crisis Manag. 5(4), 198–206 (1997)CrossRefGoogle Scholar
  34. 34.
    DeWeerd, H.A.: Political-military scenarios. The RAND Corporation, Santa Monica, p. 3535 (1967)Google Scholar
  35. 35.
    deLeon, P.: Scenario designs: an overview. Simul. Games 6(1), 39–60 (1975)CrossRefGoogle Scholar
  36. 36.
    Quarantelli, E.I.: Disaster crisis management: a summary of research findings. J. Manag. Stud. 25, 373–385 (1988)CrossRefGoogle Scholar
  37. 37.
    Lagadec, P.: Crisis management in the 21st century “unthinkable” events in “inconceivable” contexts, CECO-219 (2005)Google Scholar
  38. 38.
    Robert, B.: Nouvelles pratiques pour le pilotage des situations de crise: dix ruptures pour passer d’une logique de procédures à l’apprentissage de la surprise. Environnement, Risques and Santé 1(1), 22–30 (2002)Google Scholar
  39. 39.
    Yu, L.A., Lai, K.K.: A distance-based group decision-making methodology for multi-person multi-criteria emergency decision support. Decis. Support Syst. 51, 307–315 (2011)CrossRefGoogle Scholar
  40. 40.
    Sun, B.Z., Ma, W.M., Zhao, H.Y.: A fuzzy rough set approach to emergency material demand prediction over two universes. Appl. Math. Model. 37, 7062–7070 (2013)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Sayegh, L., Anthony, W.P., Perrewé, P.L.: Managerial decision-making under crisis: the role of emotion in an intuitive decision process. Human Resour. Manag. Rev. 14, 179–199 (2004)CrossRefGoogle Scholar
  42. 42.
    Bouget, G., Chapuis, J., Vincent, J.: Conception de scénarios d’attaque de systèmes complexes (2009).
  43. 43.
    Cannon-Bowers, J.A., Bowers, C.A.: Synthetic Learning Environments. University of Central Florida, Orlando, Florida, 12 (2007)Google Scholar
  44. 44.
    Walker, W. E.: The use of scenarios and gaming in crisis management planning and training, pp. 1–18. RAND Ed., Santa Monica (1995)Google Scholar
  45. 45.
    World Economic Forum: The Global Risks Report 2017, 12th edn. World Economic Forum, Cologny (2017)Google Scholar
  46. 46.
    Cyprus: Zygi naval base munitions blast kills 12 - BBC News.
  47. 47.
  48. 48.

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Chrysostomi Maria Diakou
    • 1
  • Angelika I. Kokkinaki
    • 1
  • Styliani Kleanthous
    • 1
  1. 1.University of NicosiaNicosiaCyprus

Personalised recommendations