Efficacy and Planning in Ophthalmic Surgery – A Vision of Logical Programming

  • Nuno Maia
  • Manuel Mariano
  • Goreti Marreiros
  • Henrique Vicente
  • José Neves
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10448)

Abstract

Different variables should be considered in order to identify the critical aspects that influence ophthalmologic surgery and, in particular, the patient’s conditions that can become the key factor in this process, i.e., in situations that can influence the stability and surgery of the patient. Protocol of ophthalmologic surgery has as main concern Glycemic Index, Maximum Blood Pressure, Abnormal Cardiac Index, and Cardiac-Respiratory Insufficiency. Such variables will be used to construct a dynamic virtual world of complex and interacting entities that map real cases of surgical planning situations, understood here as the terms that make the extensions of mathematical logic functions that compete against one another in a rigorous selection regime in which fitness is judged by one criterion alone, its Quality-of-Information. Indeed, one focus is on the development of an Evolutionary Clinical Decision Support System to evaluate patient stability and assist the physicians in the decision of doing or postponing surgery, once cataract is the leading cause of blindness in the world.

Keywords

Ophthalmologic surgery Logic programming Evolutionary case based reasoning Knowledge representation and reasoning 

Notes

Acknowledgments

This work has been supported by COMPETE: POCI-01-0145-FEDER-007043 and FCT – Fundação para a Ciência e Tecnologia within the Project Scope: UID/CEC/00319/2013.

References

  1. 1.
    European Commission: Investing in Health: Towards Social Investment for Growth and Cohesion – Including Implementing the European Social Fund 2014–2020. The European Commission, Brussels (2013)Google Scholar
  2. 2.
    Commission of the European Communities: Together for Health: A Strategic Approach for the EU 2008–2013. The Commission of the European Communities, Brussels (2007)Google Scholar
  3. 3.
    Mossialos, E., Dixon, A.: Funding health care: an introduction. In: Mossialos, E., Dixon, A., Figueras, J., Kutzin, J. (eds.) Funding Health Care: Options for Europe, pp. 1–30. Open University Press, Buckingham (2002)Google Scholar
  4. 4.
    Directorate-General of Health: National Program for Health of Elderly People. Directorate-General of Health, Lisbon (2004)Google Scholar
  5. 5.
    Neves, J.: A logic interpreter to handle time and negation in logic databases. In: Muller, R., Pottmyer, J. (eds.) Proceedings of the 1984 Annual Conference of the ACM on the 5th Generation Challenge. Association for Computing Machinery, New York, pp. 50–54 (1984)Google Scholar
  6. 6.
    Neves, J., Machado, J., Analide, C., Abelha, A., Brito, L.: The halt condition in genetic programming. In: Neves, J., Santos, M.F., Machado, J. (eds.) Progress in Artificial Intelligence. LNAI, vol. 4874, pp. 160–169. Springer, Berlin (2007)CrossRefGoogle Scholar
  7. 7.
    Aamodt, A., Plaza, E.: Case-based reasoning: foundational issues, methodological variations, and system approaches. AI Commun. 7, 39–59 (1994)Google Scholar
  8. 8.
    Richter, M.M., Weber, R.O.: Case-Based Reasoning: A Textbook. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-40167-1CrossRefGoogle Scholar
  9. 9.
    Carneiro, D., Novais, P., Andrade, F., Zeleznikow, J., Neves, J.: Using case-based reasoning and principled negotiation to provide decision support for dispute resolution. Knowl. Inf. Syst. 36, 789–826 (2013)CrossRefGoogle Scholar
  10. 10.
    Janssen, R., Spronck, P., Arntz, A.: Case-based reasoning for predicting the success of therapy. Expert Syst. 32, 165–177 (2014)CrossRefGoogle Scholar
  11. 11.
    Ying, S., Joël, C., Arnelle, J., Kai, L.: Emerging medical informatics with case-based reasoning for aiding clinical decision in multi-agent system. J. Biomed. Inf. 56, 307–317 (2015)CrossRefGoogle Scholar
  12. 12.
    World Health Organization: Health in All Policies (HiAP) Framework for Country Action. http://www.who.int/cardiovascular_diseases/140120HPRHiAPFramework.pdf
  13. 13.
    Fraunfelder, F.: Game plan for a winning pratice. Ophthalmol. Manag. 16, 16–22 (2012)Google Scholar
  14. 14.
    Dexter, F., Macario, A., Penning, D., Chung, P.: Development of an appropriate list of surgical procedures of a specified maximum anesthetic complexity to be performed at a new ambulatory surgery facility. Anesth. Analg. 95, 78–82 (2002)CrossRefGoogle Scholar
  15. 15.
    Dexter, F., Traub, R.D.: Statistical method for predicting when patients should be ready on the day of surgery. Anesthesiology 93, 1107–1114 (2000)CrossRefGoogle Scholar
  16. 16.
    American College of Eye Surgeons: Guidelines for Cataract Practice. www.aces-abes.org/guidelines_for_cataract_practice.htm
  17. 17.
    Dexter, F., Epstein, R., Traub, R., Xiao, Y.: Making management decisions on the day of surgery based on operating room efficiency and patient waiting times. Anesthesiology 101, 1444–1453 (2004)CrossRefGoogle Scholar
  18. 18.
    Kakas, A., Kowalski, R., Toni, F.: The role of abduction in logic programming. In: Gabbay, D., Hogger, C., Robinson, I. (eds.) Handbook of Logic in Artificial Intelligence and Logic Programming, vol. 5, pp. 235–324. Oxford University Press, Oxford (1998)Google Scholar
  19. 19.
    Pereira, L., Anh, H.: Evolution prospection. In: Nakamatsu, K. (ed.) New Advances in Intelligent Decision Technologies—Results of the First KES International Symposium IDT 2009. Studies in Computational Intelligence, vol. 199, pp. 51–64. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-00909-9_6CrossRefGoogle Scholar
  20. 20.
    Turner, M., Fauconnier, G.: Conceptual integration and formal expression. J. Metaphor Symb. Act. 10, 183–204 (1995)CrossRefGoogle Scholar
  21. 21.
    Fernandes, A., Vicente, H., Figueiredo, M., Neves, M., Neves, J.: An evaluative model to assess the organizational efficiency in training corporations. In: Dang, T.K., Wagner, R., Küng, J., Thoai, N., Takizawa, M., Neuhold, E. (eds.) FDSE 2016. LNCS, vol. 10018, pp. 415–428. Springer, Cham (2016). doi: 10.1007/978-3-319-48057-2_29CrossRefGoogle Scholar
  22. 22.
    Fernandes, F., Vicente, H., Abelha, A., Machado, J., Novais, P., Neves J.: Artificial neural networks in diabetes control. In Proceedings of the 2015 Science and Information Conference (SAI 2015), pp. 362–370, IEEE Edition (2015)Google Scholar
  23. 23.
    Quintas, A., Vicente, H., Novais, P., Abelha, A., Santos, M.F., Machado, J., Neves, J.: A case based approach to assess waiting time prediction at an intensive care unity. In: Arezes, P. (ed.) Advances in Safety Management and Human Factors. AISC, vol. 491, pp. 29–39. Springer, Cham (2016). doi: 10.1007/978-3-319-41929-9_4CrossRefGoogle Scholar
  24. 24.
    Silva, A., Vicente, H., Abelha, A., Santos, M.F., Machado, J., Neves, J., Neves, J.: Length of stay in intensive care units—a case base evaluation. In: Fujita, H., Papadopoulos, G.A. (eds.) New Trends in Software Methodologies, Tools and Techniques, Frontiers in Artificial Intelligence and Applications, vol. 286, pp. 191–202. IOS Press, Amsterdam (2016)Google Scholar
  25. 25.
    Figueiredo, M., Esteves, L., Neves, J., Vicente, H.: A data mining approach to study the impact of the methodology followed in chemistry lab classes on the weight attributed by the students to the lab work on learning and motivation. Chem. Educ. Res. Pract. 17, 156–171 (2016)CrossRefGoogle Scholar
  26. 26.
    Haykin, S.: Neural Networks and Learning Machines. Pearson Education, Upper Saddle River (2009)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Nuno Maia
    • 1
  • Manuel Mariano
    • 2
  • Goreti Marreiros
    • 3
  • Henrique Vicente
    • 4
    • 5
  • José Neves
    • 5
  1. 1.Departamento de InformáticaUniversidade do MinhoBragaPortugal
  2. 2.Centro Hospitalar Baixo Vouga, EPEAveiroPortugal
  3. 3.GECAD – Grupo de Engenharia do Conhecimento e Apoio à Decisão, Departamento de Engenharia InformáticaInstituto Superior de Engenharia do PortoPortoPortugal
  4. 4.Departamento de Química, Escola de Ciências e TecnologiaUniversidade de ÉvoraÉvoraPortugal
  5. 5.Centro AlgoritmiUniversidade do MinhoBragaPortugal

Personalised recommendations