Multiagent Coalition Structure Optimization by Quantum Annealing

  • Florin LeonEmail author
  • Andrei-Ştefan Lupu
  • Costin Bădică
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10448)


Quantum computing is an increasingly significant area of research, given the speed up that quantum computers may provide over classic ones. In this paper, we address the problem of finding the optimal coalition structure in a small multiagent system by expressing it in a proper format that can be solved by an adiabatic quantum computer such as D-Wave by quantum annealing. We also study the parameter values that enforce a correct solution of the optimization problem.


Coalition structure Optimization Agents Weighted graph game Quantum annealing D-Wave 


  1. 1.
    Airiau, S.: Cooperative games: representation and complexity issues (2012).[8up].pdf
  2. 2.
    Bachrach, Y., Kohli, P., Kolmogorov, V., Zadimoghaddam, M.: Optimal coalition structures in cooperative graph games. In: Proceedings of the Twenty-Seventh AAAI Conference on Artificial Intelligence, AAAI 2013, Bellevue, Washington, pp. 81–87 (2013)Google Scholar
  3. 3.
    Booth, M., Reinhardt, S.P., Roy, A.: Partitioning optimization problems for hybrid classical/quantum execution, Technical report (2017).
  4. 4.
    Bunyk, P.I., Hoskinson, E., Johnson, M.W., Tolkacheva, E., Altomare, F., Berkley, A.J., Harris, R., Hilton, J.P., Lanting, T., Whittaker, J.: Architectural considerations in the design of a superconducting quantum annealing processor. arXiv preprint (2017).
  5. 5.
    Dahl, E.D.: Programming with D-Wave: map coloring problem (2013).
  6. 6.
    Denchev, V.S., Boixo, S., Isakov, S.V., Ding, N., Babbush, R., Smelyanskiy, V., Martinis, J., Neven, H.: What is the computational value of finite range tunneling? Phys. Rev. X 6(3), 10–15 (2016). doi: 10.1103/PhysRevX.6.031015CrossRefGoogle Scholar
  7. 7.
    Deng, X., Papadimitriou, C.H.: On the complexity of cooperative solution concepts. Math. Oper. Res. 19(2), 257–266 (1994). doi: 10.1287/moor.19.2.257MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Douglass, A., King, A.D., Raymond, J.: Constructing SAT filters with a quantum annealer. In: Heule, M., Weaver, S. (eds.) SAT 2015. LNCS, vol. 9340, pp. 104–120. Springer, Cham (2015). doi: 10.1007/978-3-319-24318-4_9CrossRefzbMATHGoogle Scholar
  9. 9.
    D-Wave Systems: Introduction to the D-Wave quantum hardware (2017).
  10. 10.
    Kadowaki, T., Nishimori, H.: Quantum annealing in the transverse Ising model. Phys. Rev. E 58(5), 53–55 (1998). doi: 10.1103/PhysRevE.58.5355CrossRefGoogle Scholar
  11. 11.
    King, A.D., Hoskinson, E., Lanting, T., Andriyash, E., Amin, M.H.: Degeneracy, degree, and heavy tails in quantum annealing. Phys. Rev. A 93(5), 20–23 (2016). doi: 10.1103/PhysRevA.93.052320CrossRefGoogle Scholar
  12. 12.
    Mandrà, S., Zhu, Z., Wang, W., Perdomo-Ortiz, A., Katzgraber, H.G.: Strengths and weaknesses of weak-strong cluster problems: a detailed overview of state-of-the-art classical heuristics vs quantum approaches. Phys. Rev. A 94(2), 23–37 (2016). doi: 10.1103/PhysRevA.94.022337CrossRefGoogle Scholar
  13. 13.
    O’Gorman, B., Perdomo-Ortiz, A., Babbush, R., Aspuru-Guzik, A., Smelyanskiy, V.: Bayesian network structure learning using quantum annealing. Eur. Phys. J. Spec. Top. 224(1), 163–188 (2015). doi: 10.1140/epjst/e2015-02349-9CrossRefGoogle Scholar
  14. 14.
    Pudenz, K.L., Albash, T., Lidar, D.A.: Error-corrected quantum annealing with hundreds of qubits. Nat. Commun. 5, Article no. 3243 (2014). doi: 10.1038/ncomms4243
  15. 15.
    Rahwan, T., Jennings, N.R.: An improved dynamic programming algorithm for coalition structure generation. In: Proceedings of the 7th International Conference on Autonomous Agents and Multi-agent Systems, AAMAS 2008, Estoril, Portugal, pp. 1417–1420 (2008)Google Scholar
  16. 16.
    Rønnow, T.F., Wang, Z., Job, J., Boixo, S., Isakov, S.V., Wecker, D., Martinis, J.M., Lidar, D.A., Troyer, M.: Defining and detecting quantum speedup. Science 345(6195), 420–424 (2014). doi: 10.1126/science.1252319CrossRefGoogle Scholar
  17. 17.
    Shehory, O., Kraus, S.: Methods for task allocation via agent coalition formation. Artif. Intell. 101(1), 165–200 (1998). doi: 10.1016/s0004-3702(98)00045-9MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Venturelli, D., Marchand, D.J.J., Rojo, G.: Quantum annealing implementation of job-shop scheduling. arXiv preprint (2016).
  19. 19.
    Voice, T., Polukarov, M., Jennings, N.R.: Coalition structure generation over graphs. J. Artif. Intell. Res. 45(1), 165–196 (2012). doi: 10.1613/jair.3715MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Florin Leon
    • 1
    Email author
  • Andrei-Ştefan Lupu
    • 2
  • Costin Bădică
    • 3
  1. 1.Faculty of Automatic Control and Computer Engineering“Gheorghe Asachi” Technical University of IaşiIasiRomania
  2. 2.School of Electronics and Computer ScienceUniversity of SouthamptonSouthamptonUK
  3. 3.Faculty of Automatics, Computers and ElectronicsUniversity of CraiovaCraiovaRomania

Personalised recommendations