Comparison of Ensemble Learning Models with Expert Algorithms Designed for a Property Valuation System

  • Bogdan Trawiński
  • Tadeusz Lasota
  • Olgierd Kempa
  • Zbigniew Telec
  • Marcin Kutrzyński
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10448)

Abstract

Three expert algorithms based on the sales comparison approach worked out for an automated system to aid in real estate appraisal are presented in the paper. Ensemble machine learning models and expert algorithms for real estate appraisal were compared empirically in terms of their accuracy. The evaluation experiments were conducted using real-world data acquired from a cadastral system maintained in a big city in Poland. The characteristics of applied techniques for real estate appraisal are discussed.

Keywords

Machine learning Ensemble models Sales comparison approach Expert algorithms Property valuation Mass appraisal 

References

  1. 1.
    Zurada, J., Levitan, A.S., Guan, J.: A comparison of regression and artificial intelligence methods in a mass appraisal context. J. Real Estate Res. 33(3), 349–388 (2011)Google Scholar
  2. 2.
    Peterson, S., Flangan, A.B.: Neural network hedonic pricing models in mass real estate appraisal. J. Real Estate Res. 31(2), 147–164 (2009)Google Scholar
  3. 3.
    Antipov, E.A., Pokryshevskaya, E.B.: Mass appraisal of residential apartments: an application of random forest for valuation and a CART-based approach for model diagnostics. Expert Syst. Appl. 39, 1772–1778 (2012)CrossRefGoogle Scholar
  4. 4.
    Kusan, H., Aytekin, O., Özdemir, I.: The use of fuzzy logic in predicting house selling price. Expert Syst. Appl. 37(3), 1808–1813 (2010)CrossRefGoogle Scholar
  5. 5.
    Kontrimas, V., Verikas, A.: The mass appraisal of the real estate by computational intelligence. Appl. Soft Comput. 11(1), 443–448 (2011)CrossRefGoogle Scholar
  6. 6.
    Musa, A.G., Daramola, O., Owoloko, A., Olugbara, O.: A neural-CBR system for real property valuation. J. Emerg. Trends Comput. Inf. Sci. 4(8), 611–622 (2013)Google Scholar
  7. 7.
    Jahanshiri, E., Buyong, T., Shariff, A.R.M.: A review of property mass valuation models. Pertanika J. Sci. Technol. 19(S), 23–30 (2011)Google Scholar
  8. 8.
    McCluskey, W.J., McCord, M., Davis, P.T., Haran, M., McIlhatton, D.: Prediction accuracy in mass appraisal: a comparison of modern approaches. J. Prop. Res. 30(4), 239–265 (2013)CrossRefGoogle Scholar
  9. 9.
    d’Amato, M., Kauko, T. (eds.): Advances in Automated Valuation Modeling AVM: After the Non-agency Mortgage Crisis. Studies in Systems, Decision and Control, vol. 86. Springer, Cham (2017)Google Scholar
  10. 10.
    Woźniak, M., Graña, M., Corchado, E.: A survey of multiple classifier systems as hybrid systems. Inf. Fus. 16, 3–17 (2014)CrossRefGoogle Scholar
  11. 11.
    Krawczyk, B., Woźniak, M., Cyganek, B.: Clustering-based ensembles for one-class classification. Inf. Sci. 264, 182–195 (2014)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Burduk, R., Walkowiak, K.: Static classifier selection with interval weights of base classifiers. In: Nguyen, N.T., Trawiński, B., Kosala, R. (eds.) ACIIDS 2015, Part I. LNCS, vol. 9011, pp. 494–502. Springer, Cham (2015)Google Scholar
  13. 13.
    Fernández, A., López, V., José del Jesus, M., Herrera, F.: Revisiting evolutionary fuzzy systems: Taxonomy, applications, new trends and challenges. Knowl. Based Syst. 80, 109–121 (2015)CrossRefGoogle Scholar
  14. 14.
    Lughofer, E.: Evolving Fuzzy Systems—Methodologies, Advanced Concepts and Applications. STUDFUZZ, vol. 266. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  15. 15.
    Hong, T.-P., Liou, Y.-L., Wang, S.-L., Vo, B.: Feature selection and replacement by clustering attributes. Vietnam J. Comput. Sci. 1, 47–55 (2014)CrossRefGoogle Scholar
  16. 16.
    Pham, T.-N., Nguyen, V.-Q., Tran, V.-H., Nguyen, T.-T., Ha, Q.-T.: A semi-supervised multi-label classification framework with feature reduction and enrichment. J. Inf. Telecommun. 1(2), 141–154 (2017)Google Scholar
  17. 17.
    Lasota, T., Telec, Z., Trawiński, B., Trawiński, K.: Exploration of bagging ensembles comprising genetic fuzzy models to assist with real estate appraisals. In: Yin, H., Corchado, E. (eds.) IDEAL 2009, LNCS, vol. 5788, pp. 554–561. Springer, Heidelberg (2009)Google Scholar
  18. 18.
    Krzystanek, M., Lasota, T., Telec, Z., Trawiński, B.: Analysis of bagging ensembles of fuzzy models for premises valuation. In: Nguyen, N.T., et al. (eds.) ACIIDS 2010, LNAI, vol. 5991, pp. 330–339. Springer, Heidelberg (2010)Google Scholar
  19. 19.
    Lasota, T., Telec, Z., Trawiński, B., Trawiński, K.: Investigation of the eTS evolving fuzzy systems applied to real estate appraisal. J. Mult. Valued Logic Soft Comput. 17(2–3), 229–253 (2011)Google Scholar
  20. 20.
    Lughofer, E., Trawiński, B., Trawiński, K., Kempa, O., Lasota, T.: On employing fuzzy modeling algorithms for the valuation of residential premises. Inf. Sci. 181, 5123–5142 (2011)CrossRefGoogle Scholar
  21. 21.
    Trawiński, B.: Evolutionary fuzzy system ensemble approach to model real estate market based on data stream exploration. J. Univers. Comput. Sci. 19(4), 539–562 (2013)MathSciNetGoogle Scholar
  22. 22.
    Telec, Z., Trawiński, B., Lasota, T., Trawiński, G.: Evaluation of neural network ensemble approach to predict from a data stream. In: Hwang, D., et al. (eds.) ICCCI 2014, LNAI, vol. 8733. Springer, Heidelberg (2014)Google Scholar
  23. 23.
    Lasota, T., Sawiłow, E., Trawiński, B., Roman, M., Marczuk, P., Popowicz, P.: A Method for merging similar zones to improve intelligent models for real estate appraisal. In: Nguyen, N.T., Trawiński, B., Kosala, R. (eds.) ACIIDS 2015. LNCS, vol. 9011, pp. 472–483. Springer, Cham (2015). doi: 10.1007/978-3-319-15702-3_46CrossRefGoogle Scholar
  24. 24.
    Lasota, T., Sawiłow, E., Telec, Z., Trawiński, B., Roman, M., Matczuk, P., Popowicz, P.: Enhancing intelligent property valuation models by merging similar cadastral regions of a municipality. In: Núñez, M., Nguyen, N.T., Camacho, D., Trawiński, B. (eds.) ICCCI 2015. LNCS, vol. 9330, pp. 566–577. Springer, Cham (2015). doi: 10.1007/978-3-319-24306-1_55CrossRefGoogle Scholar
  25. 25.
    Witten, I.H., Frank, E., Hall, M.A., Pal, C.J.: Data Mining: Practical Machine Learning Tools and Techniques, 4th edn. Morgan Kaufmann, Burlington (2016)Google Scholar
  26. 26.
    Krasnoborski, J.: Management of a cadastral map on a mobile platform (in Polish). Engineer’s thesis. Wroclaw University of Science and Technology, Wrocław (2015)Google Scholar
  27. 27.
    Piwowarczyk, M.: Web application to aid in real estate appraisal (in Polish). Engineer’s thesis. Wroclaw University of Science and Technology, Wrocław (2015)Google Scholar
  28. 28.
    Talaga, M.: Mobile application to aid in real estate appraisal (in Polish). Engineer’s thesis. Wroclaw University of Science and Technology, Wrocław (2015)Google Scholar
  29. 29.
    Trawiński, B., Telec, Z., Krasnoborski, J., Piwowarczyk, M., Talaga, M., Lasota, T., Sawiłow, E.: Comparison of expert algorithms with machine learning models for a real estate appraisal system. In: 2017 IEEE International Conference on Innovations in Intelligent Systems and Applications (INISTA 2017). IEEE (2017)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Bogdan Trawiński
    • 1
  • Tadeusz Lasota
    • 2
  • Olgierd Kempa
    • 2
  • Zbigniew Telec
    • 1
  • Marcin Kutrzyński
    • 1
  1. 1.Faculty of Computer Science and ManagementWrocław University of Science and TechnologyWrocławPoland
  2. 2.Department of Spatial ManagementWrocław University of Environmental and Life SciencesWrocławPoland

Personalised recommendations