Advertisement

Semantic Networks Modeling with Operand-Operator Structures in Association-Oriented Metamodel

  • Marek Krótkiewicz
  • Marcin Jodłowiec
  • Krystian Wojtkiewicz
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10448)

Abstract

Semantic networks are nowadays one of the most frequently used knowledge representation method. In this paper authors present a novel approach towards the definition and semantics of semantic networks with the use of predefined primitives as key structure elements. The presented solution is a part of Semantic Knowledge Base project, in which it is used to store complex information such as facts and rules. This approach aims at increased expressiveness of knowledge representation with the higher level of clarity of message. It introduces not only a unique duality of nodes types, namely operators and operands, but also provides mechanisms such as multiplicity, quantifiers or modifiers possible to apply to each and every of network elements.

Keywords

Semantic networks Semantic Knowledge Base Partitioned semantic nets Association-oriented database modeling 

References

  1. 1.
    Krótkiewicz, M., Wojtkiewicz, K., Jodłowiec, M., Pokuta, W.: Semantic knowledge base: quantifiers and multiplicity in extended semantic networks module. In: Ngonga Ngomo, A.-C., Křemen, P. (eds.) KESW 2016. CCIS, vol. 649, pp. 173–187. Springer, Cham (2016). doi: 10.1007/978-3-319-45880-9_14CrossRefGoogle Scholar
  2. 2.
    Krótkiewicz, M.: Association-oriented database model – n-ary associations. Int. J. Softw. Eng. Knowl. Eng. 27(02), 281–320 (2017)CrossRefGoogle Scholar
  3. 3.
    Krótkiewicz, M., Wojtkiewicz, K.: An introduction to ontology based structured knowledge base system: knowledge acquisition module. In: Selamat, A., Nguyen, N.T., Haron, H. (eds.) ACIIDS 2013. LNCS, vol. 7802, pp. 497–506. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-36546-1_51CrossRefGoogle Scholar
  4. 4.
    Sowa, J.F.: Principles of Semantic Networks: Explorations in the Representation of Knowledge. Morgan Kaufmann, San Mateo (2014)zbMATHGoogle Scholar
  5. 5.
    Collins, A.M., Quillian, M.R.: Retrieval time from semantic memory. J. Verbal Learn. Verbal Behav. 8(2), 240–247 (1969)CrossRefGoogle Scholar
  6. 6.
    Quillian, M.R.: The teachable language comprehender: a simulation program and theory of language. Commun. ACM 12(8), 459–476 (1969)CrossRefGoogle Scholar
  7. 7.
    Hendrix, G.G.: Encoding knowledge in partitioned networks. In: Findler, N.V. (ed.) Associative Networks: Representation and Use of Knowledge by Computers, pp. 51–92. Academic Press, New York (1979)CrossRefGoogle Scholar
  8. 8.
    Bundy, A., Wallen, L.: Partitioned semantic net. In: Bundy, A., Wallen, L. (eds.) Catalogue of Artificial Intelligence Tools, p. 89. Springer, Heidelberg (1984). doi: 10.1007/978-3-642-96868-6_172CrossRefzbMATHGoogle Scholar
  9. 9.
    Brachman, R.J., Levesque, H.J., Reiter, R.: Knowledge Representation. MIT Press, Cambridge (1992)Google Scholar
  10. 10.
    Horty, J.F., Thomason, R.H.: Boolean extensions of inheritance networks. In: Proceedings of the Eighth National Conference on Artificial Intelligence, AAAI 1990, vol. 1, pp. 633–639. AAAI Press (1990)Google Scholar
  11. 11.
    Selman, B., Levesque, H.J.: The tractability of path-based inheritance. In: IJCAI, pp. 1140–1145. Citeseer (1989)Google Scholar
  12. 12.
    Thirunarayan, K., Kifer, M., Warren, D.S.: On the declarative semantics of inheritance networks. In: IJCAI (1989)Google Scholar
  13. 13.
    Sowa, J.F.: Conceptual graphs. In: van Harmelen, F., Lifschitz, V., Porter, B. (eds.) Handbook of Knowledge Representation, vol. 3(07), pp. 213–237. Elsevier, Amsterdam (2008)CrossRefGoogle Scholar
  14. 14.
    Dudycz, H.: Usability of business information semantic network search visualization. In: Proceedings of the Mulitimedia, Interaction, Design and Innnovation, MIDI 2015, Warsaw, Poland, pp. 13:1–13:9, 29–30 June 2015Google Scholar
  15. 15.
    Shapiro, S.C.: An introduction to SNePS 3. In: Ganter, B., Mineau, G.W. (eds.) ICCS-ConceptStruct 2000. LNCS, vol. 1867, pp. 510–524. Springer, Heidelberg (2000). doi: 10.1007/10722280_35CrossRefGoogle Scholar
  16. 16.
    Helbig, H., Gnörlich, C.: Multilayered extended semantic networks as a language for meaning representation in NLP systems. In: Gelbukh, A. (ed.) CICLing 2002. LNCS, vol. 2276, pp. 69–85. Springer, Heidelberg (2002). doi: 10.1007/3-540-45715-1_6CrossRefGoogle Scholar
  17. 17.
    Cardeñosa, J., Gelbukh, A., Tovar, E.: Universal networking language: advances in theory and applications. Res. Comput. Sci. 12, 1–443 (2005)Google Scholar
  18. 18.
    Shadbolt, N., Berners-Lee, T., Hall, W.: The semantic web revisited. IEEE Intell. Syst. 21(3), 96–101 (2006)CrossRefGoogle Scholar
  19. 19.
    Jodłowiec, M., Krótkiewicz, M.: Semantics discovering in relational databases by pattern-based mapping to association-oriented metamodel—a biomedical case study. In: Piętka, E., Badura, P., Kawa, J., Wieclawek, W. (eds.) Information Technologies in Medicine. AISC, vol. 471, pp. 475–487. Springer, Cham (2016). doi: 10.1007/978-3-319-39796-2_39CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Marek Krótkiewicz
    • 1
  • Marcin Jodłowiec
    • 2
  • Krystian Wojtkiewicz
    • 1
  1. 1.Department of Information SystemsWrocław University of Science and TechnologyWrocławPoland
  2. 2.Institute of Computer ScienceOpole University of TechnologyOpolePoland

Personalised recommendations