Advertisement

Enhanced Hybrid Component-Based Face Recognition

  • Andile M. Gumede
  • Serestina Viriri
  • Mandlenkosi V. Gwetu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10448)

Abstract

This paper presents a hybrid component-based face recognition. Can face recognition be enhanced by recognizing individual facial components: forehead, eyes, nose, cheeks, mouth and chin? The proposed technique implements texture descriptors Grey-Level Co-occurrence (GLCM) and Gabor Filters, shape descriptor Zernike Moments. These descriptors are effective facial components feature representations and are robust to illumination changes. Two classification techniques have been used and compared: Support Vector Machines (SVM) and Error-Correcting Output Code (ECOC). The experimental results obtained on three different facial databases, the FERET, FEI and CMU, show that component-based facial recognition is more effective than whole-face recognition.

Keywords

Face recognition Facial components Shape descriptors Texture descriptors 

References

  1. 1.
    Abdi, H., Williams, L.J.: Principal component analysis. Wiley Interdiscip. Rev. Comput. Stat. 2(4), 433–459 (2010)CrossRefGoogle Scholar
  2. 2.
    Bhardwaj, S.K.: An algorithm for feature level fusion in multi-modal biometric system. Int. J. Adv. Res. Comput. Eng. Technol. (IJARCET) 3, 3499–3503 (2014)Google Scholar
  3. 3.
    Bailey, R.R., Srinath, M.: Orthogonal moment features for use with parametric and non-parametric classifiers. IEEE Trans. Pattern Anal. Mach. Intell. 18(4), 389–399 (1996)CrossRefGoogle Scholar
  4. 4.
    Beliakov, G., James, S., Troiano, L.: Texture recognition by using GLCM and various aggregation functions. In: IEEE World Congress on Computational Intelligence, IEEE International Conference on Fuzzy Systems, FUZZ-IEEE 2008, pp. 1472–1476. IEEE, June 2008Google Scholar
  5. 5.
    Bolme, D.S.: Elastic bunch graph matching (Doctoral dissertation, Colorado State University) (2003)Google Scholar
  6. 6.
    Bonnen, K., Klare, B.F., Jain, A.K.: Component-based representation in automated face recognition. IEEE Trans. Inf. Forensics Secur. 8(1), 239–253 (2013)CrossRefGoogle Scholar
  7. 7.
    Celik, N., Manivannan, N., Balachandran, W., Kosunalp, S.: Multimodal biometrics for robust fusion systems using logic gates. J. Biom. Biostat. 6(1), 1 (2015)Google Scholar
  8. 8.
    Chan, C.H., Tahir, M.A., Kittler, J., Pietikäinen, M.: Multiscale local phase quantization for robust component-based face recognition using kernel fusion of multiple descriptors. IEEE Trans. Pattern Anal. Mach. Intell. 35(5), 1164–1177 (2013)CrossRefGoogle Scholar
  9. 9.
    Dargham, J.A., Chekima, A., Hamdan, M.: Hybrid component-based face recognition system. In: Omatu, S., De Paz Santana, J., González, S., Molina, J., Bernardos, A., RodrÍguez, J. (eds.) Distributed Computing and Artificial Intelligence. Advances in Intelligent and Soft Computing, vol. 151, pp. 573–580. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-28765-7_69CrossRefGoogle Scholar
  10. 10.
    Eleyan, A., Demirel, H.: Co-occurrence based statistical approach for face recognition. In: 24th International Symposium on Computer and Information Sciences, ISCIS 2009, pp. 611–615, September 2009Google Scholar
  11. 11.
    Gumus, E., Kilic, N., Sertbas, A., Ucan, O.N.: Evaluation of face recognition techniques using PCA, wavelets and SVM. Expert Syst. Appl. 37(9), 6404–6408 (2010)CrossRefGoogle Scholar
  12. 12.
    Jain, A.K., Li, S.Z.: Handbook of Face Recognition. Springer, New York (2011)zbMATHGoogle Scholar
  13. 13.
    Shakthipriya, V.S., Naidu, V.P.S.: Multi sensor image fusion using empirical mode decomposition. Int. J. Adv. Res. Electr. Electron. Instrum. Eng. 252–260 (2013)Google Scholar
  14. 14.
    Taheri, S., Patel, V.M., Chellappa, R.: Component-based recognition of faces and facial expressions. IEEE Trans. Affect. Comput. 4(4), 360–371 (2013)CrossRefGoogle Scholar
  15. 15.
    Tan, X., Triggs, B.: Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE Trans. Image Process. 19(6), 1635–1650 (2010)MathSciNetCrossRefGoogle Scholar
  16. 16.
    The GLCM texture tutorial. http://www.fp.ucalgary.ca. Accessed 24 Feb 2017
  17. 17.
    Turk, M.A., Pentland, A.P.: Face recognition using eigenfaces. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Proceedings CVPR 1991, pp. 586–591, June 1991Google Scholar
  18. 18.
    Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2001, vol. 1, pp. I-I (2001)Google Scholar
  19. 19.
    Pentland, A., Moghaddam, B., Starner, T.: View-based and modular eigenspaces for face recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (1994)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Andile M. Gumede
    • 1
  • Serestina Viriri
    • 1
  • Mandlenkosi V. Gwetu
    • 1
  1. 1.School of Mathematics, Statistics and Computer ScienceUniversity of KwaZulu-NatalPietermaritzburgSouth Africa

Personalised recommendations