A Bidirectional-Based Spreading Activation Method for Human Diseases Relatedness Detection Using Disease Ontology

  • Said Fathalla
  • Yaman Kannot
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10448)


There is a numerous demand for a standard representation of the ubiquitous available information on the web. Developing an efficient algorithm for traversing large ontologies is a key challenge for many semantic web applications. This paper proposes spreading activation over ontology method based on bidirectional search technique in order to detect the relatedness between two human diseases. The aim of our work is to detect disease relatedness by considering semantic domain knowledge and description logic rules to identify diseases relatedness. The proposed method is divided into two phases: Semantic Matching and Disease Relatedness Detection. In Semantic matching phase, diseases in submitted query are semantically identified in the ontology graph. In Disease relatedness detection phase, disease relatedness is detected by running a bidirectional-based spreading activation algorithm and return the related path (set of diseases) if so. In addition, the classification of these diseases is provided as well.


Bidirectional search Disease ontology Semantic web Spreading activation 


  1. 1.
    Al Aboud, A., Al Aboud, K.: Similar names and terms in dermatology; an appraisal. Our Dermatol Online 3, 367–368 (2012)CrossRefGoogle Scholar
  2. 2.
    Anderson, J.R.: A spreading activation theory of memory. J. Verbal Learn. Verbal Behav. 22(3), 261–295 (1983)CrossRefGoogle Scholar
  3. 3.
    Bernstein, A., Kaufmann, E., Bürki, C., Klein, M.: How similar is it? towards personalized similarity measures in ontologies. In: Ferstl, O.K., Sinz, E.J., Eckert, S., Isselhorst, T. (eds.) Wirtschaftsinformatik 2005, pp. 1347–1366. Physica-Verlag HD, Heidelberg (2005). doi: 10.1007/3-7908-1624-8_71CrossRefGoogle Scholar
  4. 4.
    Croft, D., et al.: The Reactome pathway knowledgebase. Nucleic Acids Res. 42(D1), D472–D477 (2014)CrossRefGoogle Scholar
  5. 5.
    De Maio, C., et al.: Fuzzy knowledge approach to automatic disease diagnosis. In: 2011 IEEE International Conference on Fuzzy Systems (FUZZ), pp. 2088–2095. IEEE (2011)Google Scholar
  6. 6.
    Dhamankar, R., et al.: iMAP: discovering complex semantic matches between database schemas. In: Proceedings of the 2004 ACM SIGMOD International Conference on Management of Data, pp. 383–394. ACM (2004)Google Scholar
  7. 7.
    Do, H.-H., Rahm, E.: COMA: a system for flexible combination of schema matching approaches. In: Proceedings of the 28th International Conference on Very Large Data Bases, pp. 610–621. VLDB Endowment (2002)CrossRefGoogle Scholar
  8. 8.
    Euzenat, J., Meilicke, C., Stuckenschmidt, H., Shvaiko, P., Trojahn, C.: Ontology alignment evaluation initiative: six years of experience. In: Spaccapietra, S., et al. (eds.) Journal on Data Semantics XV. LNCS, vol. 6720, pp. 158–192. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-22630-4_6CrossRefGoogle Scholar
  9. 9.
    Fan, Y., Huang, X., An, A.: York university at TREC 2006: enterprise email discussion search. In: TREC 2006 (2006)Google Scholar
  10. 10.
    Fathalla, S.M., Hassan, Y.F., El-Sayed, M.: A hybrid method for user query reformation and classification. In: 2012 22nd International Conference on Computer Theory and Applications (ICCTA), pp. 132–138. IEEE (2012)Google Scholar
  11. 11.
    Fellbaum, C.: WordNet. Wiley Online Library, New York (1998)zbMATHGoogle Scholar
  12. 12.
    Giunchiglia, F., Yatskevich, M., Shvaiko, P.: Semantic matching: algorithms and implementation. In: Spaccapietra, S., et al. (eds.) Journal on Data Semantics IX. LNCS, vol. 4601, pp. 1–38. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-74987-5_1CrossRefGoogle Scholar
  13. 13.
    Guo, J., et al.: Semantic matching by non-linear word transportation for information retrieval. In: Proceedings of the 25th ACM International on Conference on Information and Knowledge Management, pp. 701–710. ACM (2016)Google Scholar
  14. 14.
    Hoehndorf, R., Dumontier, M., Gkoutos, G.V.: Evaluation of research in biomedical ontologies. Brief. Bioinform. 14(6), 696–712 (2013)CrossRefGoogle Scholar
  15. 15.
    Jena, A.: Reasoners and rule engines: jena inference support. The Apache Software Foundation (2013)Google Scholar
  16. 16.
    Kibbe, W.A., et al.: Disease ontology 2015 update: an expanded and updated database of human diseases for linking biomedical knowledge through disease data. Nucleic Acids Res. 43(D1), D1071–D1078 (2015)CrossRefGoogle Scholar
  17. 17.
    Köhler, S., et al.: The human phenotype ontology project: linking molecular biology and disease through phenotype data. Nucleic Acids Res. 42(D1), D966–D974 (2014)CrossRefGoogle Scholar
  18. 18.
    LePendu, P., Musen, M.A., Shah, N.H.: Enabling enrichment analysis with the human disease ontology. J. Biomed. Inform. 44, S31–S38 (2011)CrossRefGoogle Scholar
  19. 19.
    Li, H., Xu, J., et al.: Semantic matching in search. Found. Trends R Inf. Retriev. 7(5), 343–469 (2014)CrossRefGoogle Scholar
  20. 20.
    Ngo, V.M., Cao, T.H., Le, T.M.: Combining named entities with wordnet and using query-oriented spreading activation for semantic text search. In: 2010 IEEE RIVF International Conference on Computing and Communication Technologies, Research, Innovation, and Vision for the Future (RIVF), pp. 1–6. IEEE (2010)Google Scholar
  21. 21.
    Qin, Y., Yao, L., Sheng, Q.Z.: Approximate semantic matching over linked data streams. In: Hartmann, S., Ma, H. (eds.) DEXA 2016. LNCS, vol. 9828, pp. 37–51. Springer, Cham (2016). doi: 10.1007/978-3-319-44406-2_5CrossRefGoogle Scholar
  22. 22.
    Schriml, L.M., et al.: Disease ontology: a backbone for disease semantic integration. Nucleic Acids Res. 40(D1), D940–D946 (2012)CrossRefGoogle Scholar
  23. 23.
    Shvaiko, P., Euzenat, J.: Ontology matching: state of the art and future challenges. IEEE Trans. Knowl. Data Eng. 25(1), 158–176 (2013)CrossRefGoogle Scholar
  24. 24.
    Trotman, B.W., et al.: Studies on the pathogenesis of pigment gallstones in hemolytic anemia: description and characteristics of a mouse model. J. Clin. Invest. 65(6), 1301 (1980)CrossRefGoogle Scholar
  25. 25.
    Wu, Z., et al.: An efficient Wikipedia semantic matching approach to text document classification. Inf. Sci. 393, 15–28 (2017)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Enterprise Information Systems (EIS)University of BonnBonnGermany
  2. 2.Faculty of ScienceAlexandria UniversityAlexandriaEgypt
  3. 3.Software EngineerAlexandriaEgypt

Personalised recommendations